
A Simplified Algorithm
for Augmenting Edge-Connectivity by One

with Bipartition Constraints
Tadachika Oki

Graduate School of Engineering
Hiroshima University
1-4-1 Kagamiyama,
Higashi-Hiroshima,

739-8527 Japan
Email: oki@infonets.hiroshima-u.ac.jp

Satoshi Taoka
Graduate School of Engineering

Hiroshima University
1-4-1 Kagamiyama,
Higashi-Hiroshima,

739-8527 Japan
Email: taoka@infonets.hiroshima-u.ac.jp

Toshimasa Watanabe
Graduate School of Engineering

Hiroshima University
1-4-1 Kagamiyama,
Higashi-Hiroshima,

739-8527 Japan
Email: watanabe@infonets.hiroshima-u.ac.jp

Abstract—The k-edge-connectivity augmentation problem with
bipartition constraints (kECABP, for short) is defined by “Given
a multigraph G = (V, E) and a bipartition π = {VB,VW } of V with
VB ∩ VW = ∅, find an edge set E f of minimum size, consisting of
edges that connect VB and VW , such that G f = (V, E∪E f) is k-edge-
connected, where a multigraph means a graph, with unweighted
edges, such that multiple edges may exist.” In this paper, we
give a simplified algorithm for finding an optimal solution to
(σ + 1)ECABP in O(|V ||E| + |V |2 log |V |) time when G is σ-edge-
connected (σ > 0), and show that the problem can be solved in
linear time when 1 ≤ σ ≤ 2. The time complexity of the proposed
algorithm is equal to that of an existing algorithm of Oki et al.
(2012) (to appear).

I. Introduction

[Background] The k-edge-connectivity augmentation prob-
lem (kECA, for short) is defined by “Given a multigraph
G = (V, E), find an edge set E f of minimum cardinality
such that G f = (V, E ∪ E f) is k-edge-connected, where a
multigraph means a graph, with unweighted edges, such that
multiple edges may exist.” We often denote G f as G + E f ,
and E f is called an optimal solution to the problem. There are
several applications to construction of a fault-tolerant network,
and so on. It is called the k-edge-connectivity augmentation
problem with bipartition constraints (kECABP, for short) when
a bipartition π = {VB,VW } of V with VB∩VW = ∅ is additionally
given and we require that E f consists of edges connecting
between VB and VW (see Fig. 1).

A bipartite graph is a graph (V, E) such that V is partitioned
into two sets VB and VW with VB ∩ VW = ∅, and any edge
(u, v) ∈ E satisfies a condition (u ∈ VB and v ∈ VW) or (u ∈ VW

and v ∈ VB): such a graph is often denoted as G = (VB ∪
VW , E). If G is bipartite and we set VB = VB and VW = VW in
kECABP then G f = G + E f is bipartite.

This problem, denoted as B-kECABP, is a typical subprob-
lem of kECABP, where “B-” means that G is a bipartite graph.
There are several applications to security of statistical data
stored in a cross tabulated table [5], and so on.

1

3

6

7

8 910

11

12

13

14 5a
5b2

Fig. 1. A graph G with λ(G) = 4, where a closed circle (an open circle,
respectively) represents a vertex which belongs to VB (VW). The set of dashed
lines is an optimal solution E f = {(1, 9), (2, 7), (2, 13), (2, 14), (5b, 10), (6, 12)}
to 5ECABP.

[Existing Results] Many algorithms for kECA have been
given. [3] gave a linear time algorithm for 2ECA, and [16],
[4], [9] gave polynomial time algorithms for kECA.

[5] gave a linear time algorithm for B-2ECABP, and an
O(log |V |) parallel time algorithm on an EREW PRAM with a
linear number of processors. A general problem kECAMP is
similarly defined, where r-partition πM = {V1, . . . ,Vr} (r ≥ 2)
of V is given and E f consists of edges connecting between
Vi and V j (1 ≤ i < j ≤ r). Several algorithms for kECAMP
have been given: [1] gave an O(|V |(|E|+|V | log |V |) log |V |) time
algorithm. Note that, in [1], a given multigraph is handled as
an edge-weighted simple one such that, for any pair of vertices
u and v, a simple edge (u, v) with a weight w((u, v)) = x means
that there are x multiple edges between u and v.

Let M-kECAMP denote kECAMP in which G is an r-partite
graph, where “M-” means that G is a multipartite graph. [2]
gave a linear time algorithm for 2ECAMP, and an O(log |V |)
parallel time algorithm on an EREW PRAM with a linear
number of processors. [12] gave an O(|V ||E|+ |V |2 log |V |) time

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 1, Number 1, pages 1–8, January 2012

- 1 -

algorithm for (σ + 1)ECABP.
[Our Contributions] Now we describe our contributions of
the paper as follows.

Our main contribution of the paper is to give a simplified al-
gorithm S-Sol (σ+1)ECABP for finding an optimal solution
to (σ+ 1)ECABP in linear time when G is σ-edge-connected
and a structural graph F(G) of G is given. Note that a structural
graph F(G) represents all minimum cuts of G.

The time complexity of S-Sol (σ+1)ECABP is O(|V ||E|+
|V |2 log |V |) because F(G) can be constructed in O(|V ||E| +
|V |2 log |V |) time [10]. It follows that the problem can be solved
in linear time when 1 ≤ σ ≤ 2 because F(G) can be obtained
in O(|V | + |E|) time [8], [13].

The main theorem is as follows and its proof is given in
§ IV-D.

Theorem 1.1 Algorithm S-Sol (σ + 1)ECABP finds an op-
timal solution to (σ+1)ECABP in O(|V ||E|+ |V |2 log |V |) time.
Moreover, it runs in O(|V | + |E|) time when 1 ≤ σ ≤ 2.

[The Structure of the Paper] The paper is organized as
follows. Section II provides some definitions and notations.
Section III shows a lower bound on the size of feasible
solutions to (σ+1)ECABP. Section IV gives formal description
of S-Sol (σ+1)ECABP, and in Section IV-C, its correctness is
provided, and in Section IV-D, its time complexity is provided.
The concluding remarks are given in Section V.

II. Definitions

In this section, we explain basic terminologies of graphs and
structural graphs. Also mentioned is handling of a multigraph:
unweighted multigraphs versus edge-weighted simple graphs.
[Basic Terminologies of Graphs] An undirected graph is
denoted as G = (V(G), E(G)), where V(G) and E(G) are often
denoted as V and E, respectively. In this paper, only graphs
without loops are handled, and the term “a graph” means an
undirected multigraph unless otherwise stated. An edge that
is incident to two vertices u, v in G is denoted as (u, v). For
two graphs G = (V(G), E(G)) and H = (V(H), E(H)), H is a
subgraph of G if V(G) ⊆ V(H) and E(G) ⊆ E(H).

Remark 2.1 It should be noted that conceptually a multigraph
is used, while the corresponding edge-weighted simple graph
is adopted in actual handling of graphs in this paper.

For a set X ⊆ V of G, let G[X] denote the subgraph having
X as its vertex set and {(u, v) ∈ E | u, v ∈ X} as its edge set.

For two disjoint sets X, X′ ⊂ V , we denote (X, X′; G) =
{(u, v) ∈ E|u ∈ X and v ∈ X′}, where it is often denoted as
(X, X′) if G is clear from the context. The degree of X (in G)
is defined by dG(X) = |(X,V −X; G)|. If X = {v} then dG({v}) is
the total number of edges incident to v and is called the degree
of v (in G): dG({v}) is denoted as dG(v). For a set X ⊆ V , the
set (X,V − X; G) is called a k-cut if |(X,V − X)| = k.

For an edge set E f consisting of edges with endvertices
in V , let G + E f denote the graph (V, E ∪ E f). For a given
bipartition π = {VB,VW } of V with VB ∩ VW = ∅, E f is said to
be legal (with respect to π) if E f consists of edges connecting

51 2

3

6

7

8 910

11

12

13

14 4

Fig. 2. A structural graph F(G), where a closed circle (an open circle and a
square, respectively) represents a vertex which belongs to BF(G) (WF(G) and
HF(G)). The vertex 4 (double circled) is inserted in constructing F(G). The set
of dashed lines denotes an optimal solution E′ = {(1, 9), (2, 7), (2, 13), (2, 14),
(5, 10), (6, 12)} to a structural graph F(G) of G in Fig. 1 and λ(F(G)+ E′) =
λ(F(G)) + 1.

between different members VB and VW of π. The term “with
respect to π” is omitted if π is fixed.

A trail (or a (v0, vr)-trail) is a sequence of distinct edges
(v0, v1), (v1, v2), . . . , (vr−1, vr) in which there may appear the
same endvertices, and each of v0 and vr is called a terminal
vertex of the trail. A trail is called a closed trail if r ≥ 1 and
v0 = vr. A closed trail is called an Eulerian closed trail of G
if all edges of G are included. A trail is called a path (or a
(v0, vr)-path) if all vertices v0, v1, . . . , vr are distinct. A cycle
consists of a path with r ≥ 1 and an edge (vr, v0).

For two vertices u, v ∈ V , let λ(u, v; G) denote the maximum
number of edge-disjoint (u, v)-paths between u and v in G. For
a subset Γ ⊆ V , the edge-connectivity of Γ in G is defined
by λ(Γ; G) = minu,v∈Γ λ(u, v; G). The edge-connectivity of G
is defined as λ(V; G), and is denoted as λ(G). G is k-edge-
connected if λ(G) ≥ k for a nonnegative integer k. In particular,
G is connected if G is 1-edge-connected. For a set S ⊆ V , S is
a k-edge-connected component (k-component, for short) of G
if S is a maximal vertex set such that λ(u, v; G) ≥ k holds for
any pair of vertices u, v ∈ S . For a k-component S , S is a leaf
k-component if dG(S) = λ(G). Note that distinct k-components
are pairwise disjoint. For a k-cut (X,V − X; G), (X,V − X; G)
is a minimum cut if k = λ(G). A vertex v is called a cutvertex
of G if the number of 1-components of G − v is greater than
that of G, where G − v denotes G[V − {v}]. In this paper, let
σ = λ(G).

A tree is a connected graph which does not contain any
cycle as its subgraph. A cactus is an undirected connected
graph in which any pair of cycles shares at most one vertex:
any vertex v with 1 ≤ dG(v) ≤ 2 is called a leaf and any shared
vertex is a cutvertex.
[Structural Graphs] A structural graph F(G) = (V(F(G)),
E(F(G))) (see [10], [6] for example) of G with λ(G) = σ is a
representation of all minimum cuts of G (see Fig. 2). F(G) is
an edge-weighted cactus of O(|V |) vertices and edges such that
each tree edge (a bridge in F(G)) has weight λ(G) and each
cycle edge (an edge included in a cycle) has weight λ(G)/2.

- 2 -

Particularly if λ(G) is odd then F(G) is an edge-weighted tree.
Any minimum cut (σ-cut) of G corresponds to either a tree

edge or a pair of two cycle edges in the same cycle of F(G),
and vice versa. Each (σ + 1)-component of G is represented
as a vertex of F(G). In particular each leaf (σ+1)-component
of G corresponds to a leaf of F(G), and vice versa. Several
vertices, called empty vertices, are added in order to form a
cactus.

Let ρ: V(G) → V(F(G)) denote such a mapping. We use
the following notations: ρ(X) = {ρ(v) | v ∈ X} for X ⊆ V and
ρ−1(Y) = {v ∈ V | ρ(v) ∈ Y} for Y ⊆ V(F(G)). If Y = {v} then
ρ−1(Y) is written as ρ−1(v), instead of ρ−1({v}).

We can regard F(G) as a modified cactus which is defined as
follows: if F(G) has any bridge of weight λ(G) then we replace
such a bridge by a pair of multiple edges, assigning each edge
weight λ(G)/2 even if λ(G) is odd, and regard such a pair of
multiple edges as a simple cycle of length two. We assume
that F(G) is a modified cactus in this paper unless otherwise
stated. F(G) can be obtained in O(|V ||E|+ |V |2 log |V |) time as
a modified cactus [10].

Note that we can handle this modified cactus F(G) as a
structural graph of G and λ(F(G)) = 2. Even if λ(G) is odd,
finding an edge set E f such that λ(G + E f) = λ(G)+ 1 can be
solved by finding an edge set E′ such that λ(F(G) + E′) = 3
for a modified cactus F(G). This is because there is a bijection
ξ : E′ → E f such that ξ((u, v)) = (nu, nv), with ρ(nu) = u and
ρ(nv) = v.

A vertex y ∈ V(F(G)) with ρ−1(y) = ∅ is an empty vertex.
Let ε(G) ⊆ V(F(G)) denote the set of all empty vertices of
F(G). See [10] for efficiently constructing F(G) from G.

Let us call each vertex of VB (of VW , respectively) a black
vertex (a white one) of G. Given a structural graph F(G) of a
graph G = (V, E) with a bipartition π = {VB,VW }, we classify
vertices v ∈ V(F(G)) − ε(G) into three types as follows:

(i) ρ−1(v) ⊆ VB (ρ−1(v) ⊆ VW , respectively) (v is
called a black vertex (a white one) of F(G));
(ii) ρ−1(v) ∩ VB , ∅ and ρ−1(v) ∩ VW , ∅ (v is called
a hybrid one of F(G)).

The set of black leaves (white ones, or hybrid ones, respec-
tively) of F(G) is denoted as BF(G) (WF(G), or HF(G)). Let
LF(G) = BF(G) ∪ WF(G) ∪ HF(G). In this paper, without
loss of generality, we assume that VB , ∅, VW , ∅ and
|BF(G)| ≥ |WF(G)|.

We say that F(G) is B-dominant [5] if |BF(G)| > |WF(G)|+
|HF(G)| holds.

In figures for F(G) of this paper, we represent a hybrid
vertex as a square, and a black one or a white one as a closed
circle or an open one (see Fig. 2).

III. A Lower Bound on a Feasible Solution to (σ+ 1)ECABP

Since (σ+1)ECABP is a subproblem of kECAMP, we obtain
the following proposition by setting k = σ + 1 for a lower
bound shown in [1] on kECAMP.

Assume that F(G) has a sequence of t pairs (t ≥ 1)
of multiple edges (consisting of a simple cycle of length
two) from a vertex u0 to a vertex ut. Then let us shrink all

u0 u1 ut-1

x

yut u0

x

y

Fig. 3. Schematic explanation of 2-cycle-pruning from a leaf u0 to a vertex
ut (t ≥ 1) of F(G) in a cycle of length at least three of F(G).

F(G)

Gc

w1

w2b1

b2

w1

b1

b2

w2

Fig. 4. An example of constructing Gc from a given F(G) (by repeating
2-cycle-pruning).

vertices u0, . . . , ut−1 to ut and remove any resulting self-loop,
and then rename ut as u0. If u0 is a black or a white or
a hybrid vertex then so is the renamed vertex u0. We call
this operation 2-cycle-pruning (from u0 to ut). Fig. 3 shows
schematic explanation of 2-cycle-pruning when ut is included
in a cycle of length at least three. If x = y in Fig. 3 then 2-
cycle-pruning can be repeated.

Proposition 3.1 [12] Let Gc be any graph constructed from
F(G) by repeating 2-cycle-pruning as many times as possible.
A lower bound L on the number of edges required in aug-
menting edge-connectivity of G by one bipartition is given as
follows:

(i) If |LF(G)| = 4 and Gc is a simple cycle of length
four such that two black leaves and two other ones
(white one or hybrid one) appear alternately then L =
3;
(ii) Otherwise,
L = max{|BF(G)|, |WF(G)|, d|LF(G)|/2e}.

In the next section, we show that Algorithm S-Sol (σ +
1)ECABP finds an edge set whose size is equal to the lower
bound of Proposition 3.1, giving us an optimal solution E f .

IV. A Simplified Algorithm for (σ + 1)ECABP

In this section, we give a simplified algorithm S-Sol (σ +
1)ECABP for (σ + 1)ECABP.

A. Ideas for the Algorithm

Now we show ideas for designing the algorithm and the
main procedure.
[A Linear Ordering on a Structural Graph] Now we explain
a linear ordering on vertices of a modified cactus F(G). This
is introduced in [11] for finding an optimal solution to 3ECA
for F(G) efficiently, and is obtained as follows.

- 3 -

First all simple cycles in the cactus are assigned distinct
colors. Note that this “color” is different from a color “black”
or “white” used to present bipartition constraints. This coloring
can be done in O(|V |+ |E|) time based on a depth-first search.

Next another depth-first search starts at an arbitrary vertex
according to the following manner: if any vertex u is visited
for the first time via an edge included in some simple cycle
(for example, its color is red) then, before traversing another
edge which is in the red cycle and incident to u, the other
edges incident to u are traversed.

This search assigns a linear ordering (denoted as β̂(v)) to
each vertex v of V(F(G)) from 1 to |V(F(G))|, and traversing
vertices v in the order of β̂(v) from 1 to |V(F(G))| makes an
Eulerian closed trail ET (F(G)) of F(G). A vertex v ∈ V(F(G))
appears more than once in ET (F(G)) if and only if v is a
cutvertex of F(G).

Suppose that we fix a linear ordering β̂(v) for v ∈ V(F(G)).
By traversing ET (F(G)) in the order of β̂(v) for v ∈ V(F(G))
from 1 to |V(F(G))| also assigns another linear ordering β(v)
for leaves v ∈ LF(G), that is, all leaves of F(G) are numbered
according to β̂ by skipping cutvertices. Let us denote LF(G) =
{v1, . . . , v|LF(G)|} with indices denoting this ordering β. Put t =
d|LF(G)|/2e. Let EF be an edge set defined as follows:

EF =

{(vi, vi+t) | i = 1, . . . , t} if |LF(G)| is even
{(vi, vi+t) | i = 1, . . . , t − 1} ∪ {(vt, v1)} if |LF(G)| is odd

Clearly |EF | = d|LF(G)|/2e, and it follows from the result
of [11] that EF is an optimal solution to 3ECA for a modified
cactus F(G).
[An Optimal Solution and a Strctural Graph] We can focus
on the case where F(G) is a modified cactus with λ(F(G)) = 2.
From properties of a structural graph, it is enough to solve
3ECABP for F(G), instead of (σ+ 1)ECABP for G (see [11],
[7], for example). We call an optimal solution E′ to 3ECABP
for F(G) simply as “an optimal solution E′ to F(G)”. Note
that |LF(G + ξ(E′))| = 0.

It is easy to see that any optimal solution E′ to F(G) requires
the following (i) and (ii).

(i) Edges (u, v) ∈ E′ connect as many leaves as
possible (in order to efficiently augment the edge-
connectivity of G by one);
(ii) nu or nv, respectively, should be a black vertex
in ρ−1

G (u) or a white one in ρ−1
G (v) (in order to keep

bipartition constraints).
Algorithm S-Sol (σ + 1)ECABP and Procedure Find-

EdgesBP are outlined as follows.
[Algorithm S-Sol (σ + 1)ECABP] We outline how to find
an optimal solution E′ to F(G).

First, in order to narrow the gap between the number of
black leaves and that of white ones, each hybrid leaf is
appropriately regarded as a black leaf or a white one, since
any hybrid leaf can be treated as a black or white one.

Next we find an edge set E′p by Procedure FindEdgesBP,
where the edge set E′p consists of edges connecting different
members of a given bipartition. As input to the procedure we

choose a leaf set Lp = Wp∪Bp, where Wp consists of all white
leaves and Bp is a set of black ones arbitrarily selected so that
the number of black ones may be equal to that of white ones.
Note that |Lp| is even. If F(G) is B-dominant then, after adding
E′p to F(G), some black leaves (or possibly hybrid ones) are
left. Thus we add edges, each connecting a black leaf and
either a hybrid one or a white vertex which is not a leaf.

It follows that an optimal solution E′ to F(G) is obtained
and then we convert it into an optimal solution E f to G.
[Procedure FindEdgesBP] When |LF(G)| , 4, it finds an
edge set E′p to be added to F(G) such that Lp is included of
a 3-component S of F(G) + E′p and E′p is legal.

Let us linearly order vertices of Lp as {v1, . . . , v|Lp |} by
traversing ET (F(G)) according to a fixed linear ordering β.
Let βp(v) denote this new ordering on vertices v ∈ Lp, where
if β(u) < β(v) then βp(u) < βp(v) for u, v ∈ Lp.

First, if |Lp| = 2 then we can easily obtain such an edge set
E′p with |E′p| = 1. Next we consider the case with |Lp| ≥ 6.

There are two cases:
(i) There exists a pair b ∈ Bp and w ∈ Wp satisfying
either βp(b)+ |Lp|/2 = βp(w) or βp(b) = βp(w)+ |Lp|/2
(w = v1 and b = v1+|Lp |/2 in Fig. 5);
(ii) Otherwise (see Fig. 6).

Let Lp1 = {v2, . . . , v|Lp |/2} and Lp2 = {v2+|Lp |/2, . . . , v|Lp |} in
Fig. 5, while Lp1 = {v3, . . . , v|Lp |/2} and Lp2 = {v3+|Lp |/2, . . . , v|Lp |}
in Fig. 6.

[The case (i)] As shown in Fig. 5, the number of black
leaves in Lp1 is equal to that of white leaves in Lp2 and the
number of white leaves in Lp1 is equal to that of black leaves
in Lp2 , because Bp ∪Wp = Lp, |Bp| = |Wp| and |Lp1 | = |Lp2 |.

Then we can easily construct a matching M consisting of
edges (u, w) satisfying either (u ∈ Wp∩Lp1 and w ∈ Bp∩Lp2) or
(u ∈ Bp∩ Lp1 and w ∈ Wp∩ Lp2). Let E′p =M∪{(v1, v1+|Lp |/2)}.

[The case (ii)] First we find two leaves w ∈ Wp and b ∈ Bp

with consecutive order of βp (in Fig. 6, w = v1 and b = v2).
In this case, u ∈ Lp with |βp(w) − βp(u)| = |Lp|/2 is a white
leaf and v ∈ Lp with |βp(b) − βp(v)| = |Lp|/2 is a black leaf
(in Fig. 6, u = v1+|Lp |/2 ∈ Wp and v = v2+|Lp |/2 ∈ Bp). Similarly
to (i), |Lp1 ∩ Bp| = |Lp2 ∩ Wp| and |Lp1 ∩ Wp| = |Lp2 ∩ Bp|.
Hence we can construct a matching M similarly to (i). Let
E′p =M∪ {(v1, v2+|Lp |/2), (v2, v1+|Lp |/2)}.

Let us note that FindEdgesBP is a combination of two pro-
cedures ETC and AETC in [5]. ETC and AETC, however, can
be used only to 2-edge-connect a given connected graph, while
we generalize them so that may be used in augmenting edge-
connectivity by one for a σ-edge-connected graph (σ ≥ 1).
ETC (AETC, respectively) corresponds to Step 6 (Step 11) of
FindEdgesBP.

B. Description of the Algorithm

We give formal description of Algorithm S-Sol (σ +
1)ECABP and Procedure FindEdgesBP.

Algorithm S-Sol (σ + 1)ECABP
Input: A connected graph G = (V, E),
with a bipartition π = {VB,VW } with |VB| ≥ |VW |.

- 4 -

v1

v1 + |Lp| / 2

v2
v3

v|Lp| / 2

v|Lp|

v2 + |Lp| / 2

v3 + |Lp| / 2

w

u

Lp1

Lp2

Fig. 5. Schematic explanation of E′p at Step 6 of FindEdgesBP: each dashed
line denotes an edge of E′p and wavy lines show an Eulerian closed trail
ET (F(G)).

v|Lp| - 1

v1 v2

v2 + |Lp| / 2 v1 + |Lp| / 2

u

v3

v4

v|Lp| / 2v3 + |Lp| / 2

w = v4 + |Lp| / 2

v|Lp|

Lp1

Lp2

Fig. 6. Schematic explanation of E′p at Step 11 of FindEdgesBP: each
dashed line denotes an edge of E′p and wavy lines show an Eulerian closed
trail ET (F(G)).

v1

v2

v3

v4

v5

Lp

Fig. 7. Schematic explanation of Step 11 (i) of S-Sol (σ + 1)ECABP:
choosing {v5, v1} as Bp ensures existence of a pair va and va+|L2 |/2 in Step 3
of FindEdgesBP, where wavy lines show an Eulerian closed trail ET (F(G)).

Output: An edge set E f with minimium size
such that (V, E ∪ E f) is (σ + 1)-edge-connected
and E f is legal.

1: Construct a structural graph F(G) = (V(F(G)), E(F(G)));
2: Find a linear ordering β;
3: E′2 ← ∅, B ← BF(G), W ← WF(G), H ← HF(G), and

L← LF(G);
4: if H , ∅ then
5: Choose min{b(|L| − 2|W |)/2c, |H|} hybrid leaves,

insert them into W (regarded as white ones) and insert
the other hybrid ones into B;

6: H ← ∅; /* After this step, we have |B| ≥ |W | and |L| =
|B| + |W |, since |W | ≤ b|L|/2c. */

7: end if
8: if |LF(G)| = 4 then
9: Find an edge set E f by Lemma 4.2, output E f and

terminate;
10: else /* |LF(G)| , 4 */
11: Choose a leaf set Bp ⊆ B with |Bp| = |W | as in (i) or

(ii):
(i) If |W | = 2 two black leaves b, b′ ∈ B (|B| ≥ 3)
satisfying either (β(b) + 1 = β(b′)) or (β(b) = 1 and
|L| = β(b′)) (see Fig. 7) and Bp ← {b, b′};
(ii) Otherwise /* |W | ≥ 3 */ choose Bp ⊆ B arbitrarily;

12: Wp ← W, Lp ← Bp ∪Wp;
13: (i) Compute a linear ordering βp on Lp by traversing

ET (F(G)) according to β such that, for any v, w ∈ Lp,
if β(v) < β(w) then βp(v) < βp(w);
(ii) Let Lp = {v1, . . . , v|Lp |} with indices denoting the
order of βp;

14: Find an edge set E′1 by applying FindEdgesBP to Lp;
15: B← B − Bp;
16: end if
17: if |B| > 0 then
18: E′2 ← {(b, w) | b ∈ B}, where w is set to a leaf

v1 ∈ WF(G) ∪ HF(G) defined at Step 2, 5 or 10 of
FindEdgesBP;

19: end if
20: E′ ← E′1 ∪ E′2;
21: Output ξ(E′) = {(nb, nw) | (b, w) ∈ E′}, where (b ∈ BF(G)

and w ∈ WF(G) ∪ HF(G)) and (nb ∈ ρ−1(b) and nw ∈
ρ−1(w) ∩ VW). ut

Procedure FindEdgesBP
Input: Leaf sets Lp, Bp and Wp, and a linear ordering βp

on Lp = {v1, . . . , v|LP |} with indices representing the order of
βp.
Output: An edge set E′p.

1: if |Lp| = 2 then
2: E′p ← {(v1, v2)}, where v1 ∈ Wp and v2 ∈ Bp without

loss of generality;
3: else if there exists a subscript a satisfying either (va ∈ Bp

and va+|Lp |/2 ∈ Wp) or (va ∈ Wp and va+|Lp |/2 ∈ Bp) then
4: /* Execute Steps 5 and 6 */
5: Regard vc as v1 and assume that va ∈ Wp without loss

of generality;

- 5 -

Let Lp1 = {v2, . . . , v|Lp |/2} and Lp2 = {v2+|Lp |/2, . . . , v|Lp |};
6: E′p ← M ∪ {(v1, v1+|Lp |/2)} (see Fig. 5), where M is a

matching with |M| = |Lp|/2 − 1 consisting of edges
(u, v) satisfying (u ∈ Lp1 ∩ Wp and v ∈ Lp2 ∩ Bp) or
(u ∈ Lp1 ∩ Bp and v ∈ Lp2 ∩Wp); /* Since |Bp| = |Wp|
and |Lp1 | = |Lp2 |, such a matching M exists. */

7: else /* Such a pair as in Step 3 does not exist. */
8: /* Execute Steps 9–11 */
9: Find any subscript c satisfying either (vc ∈ Wp and

vc+1 ∈ Bp) or (v|Lp | ∈ Wp and v1 ∈ Bp);
10: Regard vc as v1 and assume that vc ∈ Wp without loss

of generality;
Let Lp1 = {v3, . . . , v|Lp |/2} and Lp2 = {v3+|Lp |/2, . . . , v|Lp |};
/* Then v1+|Lp |/2 ∈ Wp and v2+|Lp |/2 ∈ Bp */

11: E′p ← M′ ∪ {(v1, v2+|Lp |/2), (v2, v1+|Lp |/2)} (see Fig. 6),
where M′ is a matching with |M′| = |Lp|/2 − 2
consisting of edges (u, v) satisfying (u ∈ Lp1 ∩Wp and
v ∈ Lp2 ∩ Bp) or (u ∈ Lp1 ∩ Bp and v ∈ Lp2 ∩Wp);
/* Since |Bp| = |Wp| and the |Lp1 | = |Lp2 |, such a
matching M′ exists. */

12: end if
13: Output E′p. /* E′p is legal and |E′p| = |Lp|/2 */ ut

C. Correctness of the Algorithm

We prove correctness of the algorithm by using several
lemmas. First, we have the next lemma for a structural graph
F(G).

Lemma 4.1 [12] In F(G) with |LF(G)| ≥ 4, if there are dis-
tinct four leaves v, w, x, y ∈ V(F(G)) with β(v) < β(x) < β(w) <
β(y) then there are distinct four vertices nv, nw, nx, ny ∈ V(G)
such that |LF(G+{nv, nw})| = |LF(G)|−2 and |LF(G+{nx, ny})| =
|LF(G)| − 2.

The lemma for the case with |LF(G)| = 4 follows from
Proposition 3.1 and Lemma 4.1.

Lemma 4.2 [12] Assume that |LF(G)| = 4.
(i) If |BF(G)| ≥ 3 then there exists an optimal
solution E f with |E f | = |BF(G)|.
(ii) If |BF(G)| ≤ 2 then let us consider a graph Gc

defined in Proposition 3.1.
(ii-1) If Gc is a simple cycle of length four
such that two black leaves and two other
ones that are either white or hybrid ones
appear alternately (see Fig. 8) then there
exists an optimal solution E f with |E f | = 3;
(ii-2) otherwise, there exists an optimal so-
lution E f with |E f | = 2.

Next we are going to prove the next lemma on a subset of
an optimal solution to 3ECABP for a modified cactus F(G)
with λ(F(G)) = 2 and |LF(G)| , 4.

Lemma 4.3 For a structural graph F(G) with |LF(G)| , 4,
Procedure FindEdgesBP finds an edge set E′p to be added to
F(G) such that Lp is included in a 3-component S of F(G)+E′p
and E′p is legal.

Fig. 8. Schematic explanation of Lemma 4.2 (ii-1), where the set of dashed
lines is an optimal solution E′ to a structural graph F(G).

Proof: Clearly, for any (v, w) ∈ E′p, {v, w} is included in
a 3-component of F(G) + E′p because there are three edge-
disjoint paths between v and w in the graph. Furthremore, it
is well-known that {u1, u2, u3} is a subset of a 3-component
if there are three edge-disjoint paths between u1 and u2 and
between u2 and u3.

Now we consider the three cases:
(i) |Lp| = 2;
(ii) |Bp| = |Wp| ≥ 2 and a subscript a satisfying either
(va ∈ Bp and va+|Lp |/2 ∈ Wp) or (va ∈ Wp and va+|Lp |/2 ∈
Bp) exists;
(iii) |Bp| = |Wp| ≥ 3 and any subscript a satisfying
either (va ∈ Bp and va+|Lp |/2 ∈ Wp) or (va ∈ Wp and
va+|Lp |/2 ∈ Bp) does not exist.

[The case (i)] Clealy the lemma follows.
[The case (ii)] We have λ(v1, v1+|Lp |/2; F(G)+E′p) ≥ 3. Let u be
any vertex in Lp −{v1, v1+|Lp |/2}. Let (u, v) ∈ E′p. If u ∈ Lp1 then
w ∈ Lp2 , while if u ∈ Lp2 then w ∈ Lp1 . Since the discussion
is symmetric for the two cases where u ∈ Lp1 or u ∈ Lp2 ,
we explain only the case with u ∈ Lp1 . As shown in Fig. 9,
F(G)+ E′p has three edge-disjoint (v1, u)-paths P1, P2 and P3.
Hence Lp is included in a 3-component of F(G) + E′p.
[The case (iii)] We have λ(vi, vi+|Lp |/2; F(G) + E′p) ≥ 3 for i =
1, 2. Let u be any vertex in Lp − {v1, v2, v1+|Lp |/2, v2+|Lp |/2}. Let
(u, w) ∈ E′p. If u ∈ Lp1 then w ∈ Lp2 , while if u ∈ Lp2 then
w ∈ Lp1 . Since the discussion is symmetric, we explain only
the case with u ∈ Lp1 . As shown in Fig. 10 (1), F(G)+E′p has
three edge-disjoint (v1, v2)-paths P1, P2 and P3. Furthermore,
as in Fig. 10 (2), there are three edge-disjoint (v1, u)-paths P′1,
P′2 and P′3 of F(G)+E′p. Hence Lp is included in a 3-component
of F(G) + E′p.

Clearly E′p is legal. ut

Now the correctness of the algorithm is proved by the next
lemma.

Lemma 4.4 For a given graph G = (V, E) with λ(G) = σ and
a bipartition {VB,VW } of V , Algorithm S-Sol (σ+1)ECABP
finds an optimal solution E f .

Proof: We prove the next lemma by showing that V(F(G))
is only one 3-component in F(G) + E′ and by counting |E′|,
where E′ is an optimal solution to 3ECABP for F(G).

For any edge set found in Step 9, 14, 18 or 20, there are
three cases as follows:

(i) |LF(G)| = 4;
(ii) |LF(G)| , 4 and F(G) is not B-dominant;
(iii) |LF(G)| , 4 and F(G) is B-dominant.

- 6 -

v1

v1 + |Lp| / 2

w = vy

u = vx

P1

P2P3

Fig. 9. Schematic explanation of three edge-disjoint (v1, u)-paths of F(G)+E′p
in the case (ii), where an ET (F(G)) is denoted by wavy lines.

[The case (i)] Lemma 4.2 shows that Step 9 finds an edge set
E′ with |E′| = L (see Proposition 3.1 (i)) such that LF(G) is
included in a 3-component of F(G) + E′.
[The case (ii)] We have B = ∅ just before Step 17 of S-
Sol (σ+ 1)ECABP. Lemma 4.3 shows that Steps 10–16 find
an edge set E′ = E′1 with |E′| = |E′1| = |LF(G)|/2 = L
(see Proposition 3.1 (iii)) such that LF(G) is included in a
3-component of F(G) + E′.
[The case (iii)] Steps 10 –16 of S-Sol (σ + 1)ECABP find
an edge set E′1 with |E′1| = |W | and we have B , ∅ just before
Step 17. Since, for each (b, w) ∈ E′2, {b, w} is a subset of
a 3-component of F(G) + E′1, Step 20 gives us an edge set
E′ = E′1∪E′2 with |E′| = |BF(G)| = L (see Proposition 3.1(iii))
such that LF(G) is included in a 3-component of F(G) + E′.

Clearly E′p is legal in all cases.
Suppose that F(G)+ E′p has a 2-cut (X,V(F(G))− X; F(G))

in the case (i), (ii) or (iii). Then it is a 2-cut of F(G) and,
therefore, both X and V(F(G))−X include at least one leaf of
F(G). However this is not possible, since all leaves of F(G)
are included in a 3-component of F(G) + E′p. Hence V(F(G))
is a 3-component of F(G) + E′p in all the cases (i), (ii) and
(iii). ut

D. Time Complexity

A structural graph F(G) can be constructed in O(|V ||E| +
|V |2 log |V |) time [10]. Since all (σ + 1)-components are ex-
tracted in linear time [14], [13], [8], [15] when 1 ≤ σ ≤ 2, a
structural graph can be constructed in linear time in this case.
Step 5 can be done in O(|V |) time. FindEdegsBP and Step 18
can be done in O(|V |) time. Finally, an optimal soluion E′ to
F(G) can be converted into an optimal one E f to G in O(|E|)
time.

From above discussion, Proposition 3.1 and Lemma 4.4,
Theorem 1.1 follows.

V. Conclusion

In this paper, we have given a simplified O(|V ||E| +
|V |2 log |V |) time algorithm to find an optimal solution to

v1 v2

v2 + |Lp| / 2 v1 + |Lp| / 2

(1)

w = vy

u = vx

v1 v2

v2 + |Lp| / 2 v1 + |Lp| / 2

(2)

w = vy

u = vx

P1

P3 P2

P’1

P’3

P’2

Fig. 10. Schematic explanation of (1) three edge-disjoint (v1, v2)-paths and
(2) three edge-disjoint (v1, u)-paths of F(G) + E′p in the case (iii), where an
ET (F(G)) is denoted by wavy lines.

(σ + 1)ECABP when σ = λ(G). Moreover, it is shown that
the problem can be solved in linear time when 1 ≤ σ ≤ 2.

Note that, by means of S-Sol (σ+1)ECABP, we can easily
solve a problem such that a subset Γ ⊆ V is additionally given
in kECABP and we require that λ(Γ; G) ≥ (σ + 1) when σ =
λ(V; G) = λ(Γ; G).

Giving an efficient algorithm for (σ + δ)ECAMP with
σ = λ(G) and δ > 1 under several conditions is left as future
research.

Acknowledgements

The research is partly supported by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology of Japan
(No. 22500029).

References

[1] J. Bang-Jensen, H. N. Gabow, T. Jordán, and Z. Szigeti. Edge-
connectivity augmentation with partition constraints. SIAM J. Discrete
Mathematics, 12(2):160–207, 1999.

[2] Y. Chen, H. Wei, P. Huang, W. Shih, and T. Hsu. The bridge-connectivity
augmentation problem with a partition constraint. Theor. Comput. Sci.,
411(31-33):2878–2889, 2010.

- 7 -

[3] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J.
Comput., 5:653–655, 1976.

[4] A. Frank. Augmenting graphs to meet edge connectivity requirements.
SIAM J. Discrete Mathematics, 5(1):25–53, 1992.

[5] P. Huang, H. Wei, W. Lu, W. Shih, and T. Hsu. Smallest bipartite
bridge-connectivity augmentation. Algorithmica, 54(3):353–378, 2009.

[6] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all
minimal edge cuts of a nonoriented graph. Cybernetics, pages 156–162,
March-April 1986. Translated from Kibernetika, 2 (1986), 8–12.

[7] T. Mashima, S. Taoka, and T. Watanabe. A 2-approximation algorithm
to (k+ 1)-edge-connect a specified set of vertices in a k-edge-connected
graph. IEICE Trans. Fundamentals, E88-A(5):1290–1300, May 2005.

[8] H. Nagamochi and T. Ibaraki. A linear time algorithm for computing
3-edge-connected components in a multigraph. Japan J. Industrial and
Applied Math., 9(7):163–180, 1992.

[9] H. Nagamochi, S. Nakamura, and T. Ibaraki. A simplified Õ(nm) time
edge-splitting algorithm in undirected graphs. Algorithmica, 26:50–57,
2000.

[10] H. Nagamochi, S. Nakamura, and T. Ishii. Constructing a cactus for
minimum cuts of a graph in O(mn + n2 log n) time and O(m) space.
IEICE Trans. Fundamentals, E86-D(2):179–185, 2003.

[11] D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally
increasing the edge connectivity. SIAM J. Comput., 26(4):1139–1165,
August 1997.

[12] T. Oki, S. Taoka, T. Mashima, and T. Watanabe. A fast algorithm for
augmenting edge-connectivity by one with bipartition constraints. IEICE
Trans. Information and Systems, E95-D(3), 2012 (to appear).

[13] S. Taoka, T. Watanabe, and K. Onaga. A linear-time algorithm for
computing all 3-edge-connected components of an multigraph. IEICE
Trans. Fundamentals, E75–A(3):410–424, 1992.

[14] R. E. Tarjan. A note on finding the bridges of a graph. Information
Processing Letters, 2:160–161, 1974.

[15] Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J.
Discrete Algorithms, 7(1):130–146, 2009.

[16] T. Watanabe and A. Nakamura. Edge-connectivity augmentation prob-
lems. Journal of Computer and System Sciences, 35(1):96–144, 1987.

- 8 -

