
Vectorization of Kernel and Image Subsampling in
FIR Image Filtering

Teppei Tsubokawa, Yoshihiro Maeda, and Norishige Fukushima
Nagoya Institute of Technology, Nagoya, Japan

Abstract—Image subsampling is a traditional algorithm for
accelerating image processing. The subsampling natively causes
aliasing; thus, we use randomized sampling to moderate the issue.
Also, SIMD vectorization speeds up processing by computing
multiple data with a single instruction by hardware accelera-
tion. However, randomized sampling is not suitable for SIMD
vectorization. In this paper, we accelerate image filtering by sub-
sampling filtering kernel and images by randomized algorithms.
Also, the subsampling is vectorized by vector addressing. We
describe how to implement subsampling of only images, the only
kernel, and subsampling images and kernels. Also we compare
where loop is unrolled is useful. Experimental results show that
vectorization of kernel loop unrolling is faster than pixel loop
unrolling. Also, kernel and image subsampling is effective for
acceleration of bilateral filtering which a smoothing parameter
of a range kernel is large.

Index Terms—FIR image filter, SIMD, pixel subsampling,
kernel subsampling

I. INTRODUCTION

Image processing often requires real-time processing. Par-
ticularly, with the spread of high-resolution images such as
4K images and 8K images, the demand is increased. It
is difficult, however, for usual algorithms to execute high-
resolution images in real-time. Along with the development of
computer architecture, we can accelerate processing by various
arithmetic units.

One of them is vectorization of single instruction, multiple
data (SIMD). SIMD speeds up by computing multiple data
(vectors) with a single instruction. There are MMX, SSE,
AVX-512, AltiVec, and NEON as the SIMD instruction set
in the CPU. Also, the vector length, which is the number of
data that can be handled simultaneously by SIMD, has been
increased with the development of CPU architecture. As a
precondition of this SIMD instruction, it is necessary that the
alignment of the data arranged in the memory space match.
Although it is possible to process even when the alignment
is not met, it costs more than when matching. Also, if the
loading of data is not sequential, it will cost more.

Especially in image processing, technology is necessary for
application because it handles three-dimensional information
of space and color. In SIMD, there is a method that called loop
unrolling which simultaneously processes multiple elements
by unrolling a loop.

For accelerating image processing by algorithm, downsam-
pling images is a simple and general approach. The processed
images are then upsampled. The approximation accuracy is
low with the method. In for image convolution, it is effective

for performance between accuracy and speed to subsample fil-
tering kernels than image itself. However, the aliasing problem
is caused by the downsampling.

Randomization of the sampling moderate the problem. Also,
kernel subsampling with also image subsampling improve
the performance. The randomization of subsampling with
vectorization is, however, not a travail problem.

In this paper, we implement the image and kernel subsam-
pling with SIMD vectorization. The contribution of this paper
is as follows;

• we combine the kernel subsampling approach with image
subsampling with randomization for accelerating image
filtering.

• we effectively vectorize the random access processing in
the proposed approach.

II. FIR FILTERING AND ITS ACCELERATION

A. FIR Filtering

General filters for images are divided into FIR type filters
and IIR type filters. In particular, the FIR type filter is a typical
image processing. The definition formula of the FIR filter is
shown in Equation 1

Ī(p) =
1

η

∑∑∑
q∈N(p)

∑∑∑
c∈λ

f(p, q)I(q, c), (1)

where I , Ī is input image and output image, p, q is the target
pixel and the reference pixel, f is weight function, N is a
function that returns a set of reference pixels in the kernel, λ is
collection of color channels, and η is a term for normalization.

B. Acceleration for FIR Filtering

As a speeding up method in the FIR filter, there is a variable
separating type filter [3] and subsampling pixels. In variable
separating type filter, a function of the weight is separated in
the vertical direction and the horizontal direction. In FIR filter,
computation of O(r2) is required for each pixel. By separating
this in the vertical direction and horizontal direction, it can be
suppressed to the calculation of O(r).

In the approximate speeding up method of thinning pixels,
downsampling the input image, filtering it, upsampling the
result. Since the input image to the filter is smaller than the
original input image, it is possible to perform the processing
at high speed as compared with the case of the original input
image. The approximation accuracy at this time depends on
the subsampling method and how much subsampling is done.
There is also the approach to subsampling the kernel.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 1, pages 35–38, January 2019

– 35 –



C. Importance Image Subsampling

In this section, we describe a method for speeding up the
FIR filter by subsampling the pixel. We use the method of
Image Perforation [5]. There are two kinds of methods for
subsampling the pixels: thinning pixels regularly and thinning
pixel irregularly. The method of thinning out pixels regularly
is called grid sampling, which simply thin out pixels in
a lattice form so that complex preprocessing and the like
are unnecessary and simple linear interpolation is applicable
when upsampling. Performing processing at high speed is
possible. However, since the image is thinned out without
considering the characteristics of the input image, accuracy
may be remarkably low depending on the type of the filter.
In this paper, we use importance sampling as a method to
thin out pixels irregularly. Importance sampling relies on an
importance map to determine where to place samples. In
general, it is infeasible to compute an optimal importance
map. So, we use the image textureness measure of Bae et
al. [1]. For efficiency, we modify their method to use a simple
Gaussian blur instead of a bilateral filter. Our importance
sampling method works by simply remapping the intensities
of the importance map followed by dithering. We remap the
intensities of the importance map, so that is sums to the target
number of samples, fn, after begin clamped to the range [0,1].
This remapping can be done using histogram operations. We
then use dithering to determine the final sample locations, as
shown in Figure 1. The definition formula of the FIR filter
using importance sampling is shown in Equation 2.

Ī(p) = M(p)
1

η

∑∑∑
q∈N(p)

∑∑∑
c∈λ

f(p, q)I(q, c) (2)

(M(p) = {0, 1}),

where M(p) is the value of importance map at the target pixel.
When we use subsample the pixel using importance sampling,

there are black pixels in the output image like a Figure 2. So,
we interpolate using IIR type Laplacian smoothing filter as
a method of upsampling when pixels are subsampled using
importance sampling. The formula of upsampling is shown in
Equation 3.

Ī =
L ∗ I ·M
L ∗M

, (3)

where L is Laplacian smoothing filter, and M is importance
map.

D. Randomized Kernel Subsampling

As an approach similar to the method of subsampling pixels,
there is a method of increasing the speed by subsampling ref-
erence pixels in the kernel. Even when subsampling the kernel
as well as pixel subsampling, there is also method subsampling
regularly or irregularly. When the kernel is thinned regularly
in the form of a grid, although it is easy to implement, there
is a possibility that aliasing occurs. Therefore, as shown in the
Figure 3, it is possible to improve the accuracy by randomly
selecting reference pixels in the kernel and creating a plurality

(a) Input (b) Importance map

Fig. 1: Importance map for image subsampling.

Fig. 2: Resulting image of bilateral filtering with importance
image subsampling.

of patterns. Equation 4 shows an expression for randomly
selecting reference pixels in the kernel in the FIR filter.

Ī(p) =
1

η

∑∑∑
n

∑∑∑
c∈λ

f(p, R(p))I(R(p), c), (4)

where R is a function to randomize reference pixels from
N(p), and n is the number of pixels to be referred to.

III. VECTORIZED IMPLEMENTATION

A. Implementation to Subsample Pixel and Kernel

In the FIR filter, there are five loops. There is a loop
(horizontal and vertical double loop) for scanning the target
pixel, and a loop (horizontal and vertical double loop) for
scanning the reference pixel in the kernel, and a loop for
scanning the color channel of the reference pixel. In this paper,
we call this pixel loop, kernel loop, color loop in order. In this
paper, we don’t implement using the color loop but implement
using pixel loop and kernel loop.

B. Implementation to Subsample Pixel

In this section, we describe how to load the target pixel and
the reference pixel when subsampling the pixel, then perform
the processing and store the result. It is assumed that the vector
length of SIMD is 8.

First, we describe an implementation in the case of subsam-
pling the pixel using pixel loop unrolling. In the original pixel
loop unrolling, sequential pixels can be handled as vectors,
and reference pixels corresponding to these target pixels can be
loaded as vectors for calculation. However, when subsampling
pixels, the pixel to be sampled is not sequential data, so in
this paper, we create a LUT for the offset of the pixel to
be sampled, and when we load the target pixel, we first load
8 LUT data. Then, using this as an index, we load 8 pixels

– 36 –



Input images

* *
*

Randomized sampling patterns

Convolution 

kernel

Fig. 3: Overview of randomized kernel subsampling.

using the set instruction or the gather instruction. This method
is called non-vectorized load pixel loop unrolling. Then, load
reference pixels corresponding to these target pixels. When
storing, we store the elements of the vector one element at a
time or store using the scatter instruction. When the number
of pixels to be sampled is not a multiple of 8, the remaining
pixels need to be calculated by the non-vector operation.

Next, we describe an implementation in the case of subsam-
pling the pixel using kernel loop unrolling. In the kernel loop
unrolling, load one target pixel using the LUT of offset to the
pixel to be sampled, and store the result of the processing. In
original kernel loop unrolling, reference pixels in the kernel
are loaded as vectors and calculation is performed. Therefore,
the width of the kernel needs to be a multiple of the vector
length. In this paper, we use a method called non-vectorized
load kernel loop unrolling. In this method, since a plurality
of reference pixels are collected and made into a vector, it is
possible to adapt to the case where the shape of the kernel is
different for each target pixel or kernel thinning. We use non-
vectorized load kernel loop unrolling when use kernel loop
unrolling.

C. Implementation to Subsample Kernel

When subsampling the kernel, as mentioned in II-D, to
suppress aliasing, the number of reference pixels is thinned
out by using a random algorithm. There are two kinds of
implementation methods when we select reference pixels
randomly. One is a method of dynamically selecting reference
pixels randomly, and the other is a method of using LUT.
The former method is simple and intuitive. However, if we
use a complicated random sampling pattern, the calculation
cost will be high. On the other hand, in the case of the
method using the LUT, since the random pattern is calculated
in advance and stored in the LUT, the calculation cost is can
be reduced. In a paper [2], reduce the size of a binary mask
representing the reference pixel to be sampled and store in
the LUT using Carley-Patterson method [4]，[6]. However,
the amount of memory used is still not sufficiently reduced,
and as the filter size increases, the amount of memory used
increases. In that case, since the number of reference pixels
to be sampled doesn’t change greatly, the LUT is redundant.
Therefore, in this paper, we stored only the coordinates which

were randomly selected in the kernel. We introduce LUT
whose memory usage depends only on the number of reference
pixels. In this LUT, coordinates are stored in raster order to
improve cache efficiency.

First, we describe the implementation using pixel loop
unrolling. When the target pixel is loaded with 8, and the
reference pixel is randomly selected using the same random
pattern for each pixel, the relative position from the target pixel
to the reference pixel is fixed every 8 pixels. In such a case,
since pixel values are likely to be similar for every 8 pixels,
streaking noise may occur. Therefore, when loading reference
pixels, we load offsets to reference pixels which are different
random patterns for each target pixel from the LUT using the
gather instruction. Furthermore, we use this as an index and
load reference pixels using the gather instruction and perform
processing. We store it sequentially using the store instruction.

Next, in the case of implementation using kernel loop
unrolling, we load one target pixel, and load 8 reference pixels
using the gather instruction and perform processing.

D. Implementation to Subsample Image and Kernel

In this section, we describe implementation to subsample
the pixel and kernel. At this time as well as II-D we use a
random algorithm for subsampling the kernel. In the case of
pixel loop unrolling, we load 8 target pixels using the gather
instruction. When loading reference pixels, we load reference
pixels using the gather instruction twice as well as II-D of
pixel loop unrolling. When storing, we store one element at a
time or use the scatter instruction.

Next, in the case of kernel loop unrolling, we load one
target pixel and load 8 reference pixels for it using the gather
instruction.

IV. EXPERIMENTAL RESULTS

We use a bilateral filter in the experiment. Bilateral filter
is one of the edge-preserving smoothing filters. The following
equation calculates the weight of a bilateral filter.

f(p, q) = exp(
∥p− q∥22
−2σ2

s

) exp(
∥I(p)− I(q)∥22

−2σ2
c

) (5)

where ∥ · ∥2 is L2 norm, σs is space standard deviation, and
σc is range standard deviation. Because the bilateral filter is

Fig. 4: Comparison between pixel loop unrolling and kernel
loop unrolling when subsampling only pixels.

– 37 –



Fig. 5: Comparison between pixel loop unrolling and kernel
loop unrolling when subsampling only the kernel.

Fig. 6: Comparison between pixel loop unrolling and kernel
loop unrolling when subsampling pixel and kernel.

an edge-preserving smoothing filter, we use importance sam-
pling that densely samples near the edge. We experiment on
subsampling only the pixel, subsampling only the kernel, and
subsampling the pixel and the kernel changing the parameters.
We implemented this in C++. The compiler we use is Visual
Studio 2015. We use AVX and FMA in SIMD and use Open
MP as parallelization. Our computing environment, the CPU is
Intel Core i7-6700 3.40GHz, the memory is 32G, and the OS
is Windows 10 64 bit. First, we compare the performance of
pixel loop unrolling and kernel loop unrolling for subsampling
only the pixel, subsampling only the kernel, and subsampling
the pixel and kernel. We set the parameters as the kernel radius
r = 24, σs = 8, and σc = 48. As shown in Figure 4, the
processing time for kernel loop unrolling is slightly short.
Also, in Figure 5，6, in pixel loop unrolling, we load the
reference pixels by the gather instruction twice. Therefore,
the processing time of kernel loop unrolling is considered to
be short as a whole. Next, we show the result of verifying
which subsampling method should be selected for what kind of
parameters. The result of the verification is shown in Figure 7.
In the case of r = 24, σc = 48 of Figure 7a, accuracy is low
when only pixels are subsampled, and accuracy is high when
only the kernel is subsampled. When pixels and kernel are
subsampled, we set the pixel usage rate to 50% or 60%, and
change the kernel usage rate from 10% to 50%. In that case,
processing time is short, but when the usage rate of the kernel
is the same, accuracy is lower than when only the kernel is
subsampled. Therefore, when σc is small, it is considered that
we should choose to subsample only the kernel.
In the case of r = 24, σc = 120 of Figure 7b, accuracy is

(a) r = 24，σc = 48

(b) r = 24，σc = 120

Fig. 7: Performance comparison of bilateral filtering with
subsampling.

high when only pixels are subsampled, and accuracy is low
when only the kernel is subsampled. When subsampling the
pixel and the kernel, when the pixel usage rate is 60%, it has
the same accuracy when only the kernel is subsampled, and
it is located on the upper left of another method in a graph.
Therefore, when σc = 120, it is better to subsample the kernel
using about 60% of the pixels.

V. CONCLUSION

In this paper, we accelerate image filtering by subsampling
filtering kernel and images by randomized algorithms. Also,
the subsampling is vectorized by vector addressing. Experi-
mental results show that vectorization of kernel loop unrolling
is faster than pixel loop unrolling. Also, kernel and image
subsampling is effective for acceleration of bilateral filtering
which a smoothing parameter of a range kernel is large.

ACKNOWLEDGMENT
This work was supported by KAKENHI JP17H01764,

JP18K19813.
REFERENCES

[1] S. Bae, S. Paris, and F. Durand, Two-scale tone management for photo-
graphic look, ACM Transactions on Graphics 25 (2006), 637–645.

[2] F. Banterle, M. Corsini, P. Cignoni, and R. Scopigno, A low-memory,
straightforward and fast bilateral filter through subsampling in spatial
domain, Computer Graphics Forum 31 (2012), no. 1, 19–32.

[3] R. C. Gonzalez and R. E. Woods, Digital image processing, Prentice Hall,
2008.

[4] T. Kollig and A. Keller, Efficient multidimensional sampling, Computer
Graphics Forum 21 (2008), no. 3.

[5] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes, Image perfora-
tion:automatically accelerating image pipelines by intelligently skipping
samples, ACM Transactions on Graphics 35 (2016), no. 153.

[6] T. Schlomer, D. Heck, and O. Deussen, Farthest-point optimized point
sets with maximized minimum distance, Proceedings of ACM SIGGRAPH
Symposium on High Performance Graphics, 2011, pp. 135–142.

– 38 –


