
An asynchronous P system with branch and bound
for solving Hamiltonian cycle problem

(preliminary version)

Akihiro Fujiwara Koutaro Umetsu Fumiya Nozato
Graduate School of Computer Science and Systems Engineering

Kyushu Institute of Technology
Iizuka, Fukuoka, 820-8502, Japan

fujiwara@cse.kyutech.ac.jp

Abstract—Membrane computing, which is a computational
model based on cell activity, has considerable attention as one
of new paradigms of computations. In the general membrane
computing, computationally hard problems have been solved in
a polynomial number of steps using an exponential number of
membranes. However, reduction of the number of membranes
must be considered to make P system more realistic model.

In the paper, we propose an asynchronous P system with
branch and bound, which is a well known optimization tech-
nique, to reduce the number of membranes. The proposed P
system solves Hamiltonian cycle for a graph with n vertices,
and works in O(n!) sequential steps or O(n2) parallel steps.

In addition, the number of membranes used in the proposed
P system is evaluated using a computational simulation.
The experimental results show validity and efficiency of the
proposed P system.

Index Terms—membrane computing, Hamiltonian cycle,
branch and bound

I. Introduction

A number of next-generation computing paradigms
have been considered due to limitation of silicon-based
computational hardware. As an example of the computing
paradigms, natural computing, which works using natural
materials for computation, has considerable attention.
Membrane computing, which is a representative of the
natural computing, is a computational model inspired by
the structures and behaviors of living cells.

A basic feature of the membrane computing was intro-
duced in [10] as a P system. The P system consists mainly
of membranes and objects. A membrane is a computing
cell, in which independent computation is executed, and
may contain objects and other membranes. Each object
evolves according to evolution rules associated with a
membrane in which the object is contained.

The P system and most variants have been proved to be
universal [12], and several P systems have been proposed
for solving computationally hard problems [2], [3], [6], [7],
[9], [11], [13]–[16], [19].

In addition, asynchronous parallelism has been consid-
ered on the P system. The asynchronous parallelism means
that all objects may react on rules with different speed,
and evolution rules are applied to objects independently.

Since all objects in a living cell basically works in asyn-
chronous manner, the asynchronous parallelism makes P
system a more realistic computational model.

A number of asynchronous P systems have been pro-
posed for the computationally hard problems in [1], [4],
[8], [17], [18]. For example, an asynchronous P system has
been proposed for solving Hamiltonian cycle in [17]. The
P system solves Hamiltonian cycle for a graph with n
vertices in O(n!) sequential steps or O(n2) parallel steps
using O(n2) kinds of objects.

In all of the above P systems, the computationally hard
problems have been solved in polynomial numbers of steps
using exponential numbers of membranes. The number
of membranes means the number of living cells, and
reduction of the number of membranes must be considered
in case that the P system is implemented using living cells
because living cells cannot be created exponentially.

Recently, an asynchoronous P system using branch and
bound has been proposed in [5] for reducing the number
of membranes. The branch and bound is a well known
optimization technique, and the technique is used in the P
system for omitting partial value assignments that cannot
satisfy a given Boolean formula.

In the paper, we propose an asynchronous P system
for solving Hamiltonian cycle with branch and bound. In
the proposed P system, a partial permutation of vertices
is created, and then, existence of edges between vertices
is checked for the partial permutation. If there is no
edge between the vertices, the partial permutation is
discarded as a bounding operation. Since the number of
membranes increases according to the number of created
permutations of vertices, the number can be reduced by
omitting permutations that must not be a Hamiltonian
cycle.

We show that the proposed P system solves Hamiltonian
cycle for a graph with n vertices, and works in O(n!)
sequential steps or O(n2) parallel steps using O(n2) kinds
of objects.

In addition, validity of the proposed system is evaluated
using a computational simulation. In the simulation,
various instances are executed on the previous P system

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 2, pages 74–80, July 2019

– 74 –

1

2 3

a b

Fig. 1. An example of membrane structure

[17] and the proposed P system, and the number of
membranes are compared for the same instances. The
experimental results show validity and efficiency of the
proposed P system with branch and bound.

The remainder of the present paper is organized as
follows. In Section 2, we give a brief description of the
model for asynchronous membrane computing. In Section
3, we propose the P system with branch and bound
for Hamiltonian cycle, and experimental results for the
proposed P system are shown in Section 4. Section 5
concludes the paper.

II. Preliminaries
A. Computational model for membrane computing

Several models have been proposed for membrane com-
puting. We briefly introduce a basic model of the P system
in this subsection.

The P system consists mainly of membranes and ob-
jects. A membrane is a computing cell, in which indepen-
dent computation is executed, and may contain objects
and other membranes. In other words, the membranes
form nested structures. In the present paper, each mem-
brane is denoted by using a pair of square brackets, and
the number on the right-hand side of each right-hand
bracket denotes the label of the corresponding membrane.
An object in the P system is a memory cell, in which each
data is stored, and can divide, dissolve, and pass through
membranes. In the present paper, each object is denoted
by finite strings over a given alphabet, and is contained
in one of the membranes.

For example, [[a]2[b]3]1 and Figure 1 denotes the same
membrane structure that consists of three membranes.
The membrane labeled 1 contains two membranes labeled
2 and 3, and the two membranes contain objects a and b,
respectively.

Computation of P systems is executed according to
evolution rules, which are defined as rewriting rules for
membranes and objects. All objects and membranes are
transformed in parallel according to applicable evolution
rules. If no evolution rule is applicable for objects, the
system ceases computation.

We now formally define a P system and the sets used
in the system as follows.

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm)

O: O is the set of all objects used in the system.
µ: µ is membrane structure that consists of m

membranes. Each membrane in the structure is
labeled with an integer.

ωi: Each ωi is a set of objects initially contained only
in the membrane labeled i.

Ri: Each Ri is a set of evolution rules that are
applicable to objects in the membrane labeled
i.

In the present paper, we assume that input objects are
given from the outside region into the outermost mem-
brane, and computation is started by applying evolution
rules. We also assume that output objects are sent from
the outermost membrane to the outside region.

In membrane computing, several types of rules are
proposed. In the present paper, we consider five basic rules
of the following forms.

(1) Object evolution rule:

[a]h → [b]h

In the above rule, h is a label of the membrane
and a, b ∈ O. Using the rule, an object a evolves
into another object b. (We omit the brackets in
each evolution rule such as a → b for cases that
a corresponding membrane is obvious.)

(2) Send-in communication rule:

a[]h → [b]h

In the above rule, h is a label of the membrane,
and a, b ∈ O. Using the rule, an object a is sent
into the membrane, and can evolve into another
object b.

(3) Send-out communication rule:

[a]h → []hb

In the above rule, h is a label of the membrane,
and a, b ∈ O. Using the rule, an object a is sent
out of the membrane, and can evolve into another
object b.

(4) Dissolution rule:

[a]h → b

In the above rule, h is a label of the membrane,
and a, b ∈ O. Using the rule, the membrane,
which contains object a, is dissolved, and the
object can evolve into another object b. (The
outermost membrane cannot be dissolved.)

(5) Division rule:

[a]h → [b]h[c]h

In the above rule, h is a label of the membrane,
and a, b, c ∈ O. Using the rule, the membrane,
which contains object a, is divided into two mem-
branes that contain objects b and c, respectively.

– 75 –

We assume that each of the above rules is applied in
a constant number of biological steps. In the following
sections, we consider the number of steps executed in a P
system as the complexity of the P system.
B. Maximal parallelism and asynchronous parallelism

In the standard model in membrane computing, which
is a P system with maximal parallelism, all of the above
rules are applied in a non-deterministic maximally parallel
manner. In one step of computation of the P system, each
object is evolved according to one of applicable rules. (In
case there are several possibilities, one of the applicable
rules is non-deterministically chosen.) All objects, for
which no rules applicable, remain unchanged to the next
step. In other words, all applicable rules are applied in
parallel in each step of computation.

On the other hand, evolution rules are applied in a
fully asynchronous manner on the asynchronous P system
[17], and any number of applicable evolution rules is
applied in each step of computation. In other words, the
asynchronous P system can be executed sequentially, and
also can be executed in the maximal parallel manner.

The reason why we consider the asynchronous paral-
lelism in this paper is based on the fact that every living
cell acts independently and asynchronously. Since the
standard P system ignores the asynchronous feature of
living cells, the asynchronous P system is a more realistic
computation model for cell activities.

In the asynchronous P system, all evolution rules can
be applied completely in parallel, which is the same as the
conventional P system, or all evolution rules can be applied
sequentially. We define the number of steps executed in the
asynchronous P system in the maximal parallel manner as
the number of parallel steps. We also define the number
of steps in the case that the applicable evolution rules are
applied sequentially as the number of sequential steps.
The numbers of parallel and sequential steps indicate the
best and worst case complexities for the asynchronous P
system. In addition, the proposed asynchronous P system
must be guaranteed to output a correct solution in any
asynchronous execution.
III. An asynchronous P system with branch and bound

for Hamiltonian cycle
In this section, we present an asynchronous P system

with branch and bound for Hamiltonian cycle. We first
explain an input and an output of the problem for the
system, and then, show an outline and details of the P
system. Finally, we discuss complexity of the proposed P
system.
A. Input and output for Hamiltonian cycle

The Hamiltonian cycle is a typical NP-complete graph
problem. Given a directed graph G = (V,E), a cycle in G
is called a Hamiltonian cycle if the cycle visits each vertex
exactly once. For example, the directed graph in Fig. 2
has a Hamiltonian cycle (v1, v3, v2, v4, v1).

v
1 v

2

v
3 v

4

Fig. 2. A directed graph containing a Hamiltonian cycle
(v1, v3, v2, v4, v1).

In the present paper, an output of the problem is one
of two values “TRUE” and “FALSE”. An output value is
“TRUE” if there exists a Hamiltonian cycle for an input
graph, otherwise, the value is “FALSE”.

We assume that an input graph is given by the following
two sets of objects, OV and OE , in the P system.

OV = {⟨vi⟩ | 1 ≤ i ≤ n}
OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

Objects ⟨vi⟩ and ⟨ei,j ,W ⟩ denote a vertex vi and an edge
(vi, vj) in the graph G, respectively. If there exists an edge
(vi, vj) in the graph, W is set to T , i.e. ⟨ei,j , T ⟩ is in OE ,
otherwise, W is set to F . A set of objects {⟨ei,i, F ⟩ | 1 ≤
i ≤ n} is also contained in OE for simplicity of the P
system.

For example, the following two sets of objects denote a
directed graph in Fig. 2.

OV = {⟨v1⟩, ⟨v2⟩, ⟨v3⟩, ⟨v4⟩}
OE = {⟨e1,1, F ⟩, ⟨e1,2, F ⟩, ⟨e1,3, T ⟩, ⟨e1,4, F ⟩,

⟨e2,1, F ⟩, ⟨e2,2, F ⟩, ⟨e2,3, F ⟩, ⟨e2,4, T ⟩,
⟨e3,1, F ⟩, ⟨e3,2, T ⟩, ⟨e3,3, F ⟩, ⟨e3,4, T ⟩,
⟨e4,1, T ⟩, ⟨e4,2, F ⟩, ⟨e4,3, F ⟩, ⟨e4,4, F ⟩}

We assume that OV and OE are given from the outside
region into the skin membrane.

The output of the P system is one of the following
two objects. The object ⟨TRUE⟩ is sent out from the
skin membrane to the outside region if there exists a
Hamiltonian cycle in the graph, otherwise, the object
⟨FALSE⟩ is sent out to the outside region.

B. Branch and bound technique for Hamiltonian cycle
Branch and bound is a well known computing paradigm

for optimization problem. On P system for solving Hamil-
tonian cycle [17], all permutation of vertices are created for
an input graph with n vertices, and (n−1)! permutations
are checked whether the cycle is Hamiltonian. However,
a partial permutation of vertices can be discarded if the
output is determined to be “FALSE”.

Fig. 3 shows a search tree for illustration of the above
idea. Let a directed graph in Fig. 2 be an input graph.
In the search tree, a permutation of vertices is denoted
by a path from root node to a leaf node. In this case, a

– 76 –

Bounding

v2 v3 v4

v1

v3 v4
v2 v4 v2 v3

v4 v3 v4 v3 v2v2

v1 v1 v1 v1v1v1

Fig. 3. An example of branch and bound for Hamiltonian cycle

path starting with an edge from v1 to v2 can be bounded
because there is no edge between v1 and v2, and the
permutation must not be cycle. In another case, a path
starting with an edge from v1 to v4 is bounded similarly.

We now explain an overview of the asynchronous P
system with branch and bound for solving Hamiltonian
cycle. An initial membrane structure for the computation
is [[]2]1. We call the membranes labeled 1 and 2 outer
and inner membranes, respectively.

The computation of the P system mainly consists of the
following three steps.

Step 1: Move all input objects in the outer membrane
into the inner membrane.

Step 2: In each inner membrane, repeat the following
(2-1) and (2-2) until “TRUE” or “FALSE” is
outputted.

(2-1) Select a vertex, which is not visited, as a next
vertex. In case that there is an edge from the last
vertex in the permutation to the next vertex, the
next vertex is added to the partial permutation of
vertices. (The partial permutation denotes a path
from a start vertex.) The partial permutation
with the next vertex is created by dividing the
inner membrane.
In case that there is no edge from the last vertex
to the next vertex, the partial permutation is
discarded, and an object that denotes “FALSE”
is outputted. (The divided membrane stops the
computation.)

(2-2) In case that length of the permutation is equal
to the number of vertices, check the created
permutation of vertices whether the permutation
denotes a Hamiltonian cycle. If there exist an
edge from the last vertex in the permutation to
the start vertex, output an object that denotes
“TRUE”, otherwise, output an object that de-
notes “FALSE”.

Step 3: Send out a final result, “TRUE” or “FALSE”,
from the outer membrane.

C. Details of the P system

We now explain details of each step of the computation.
In Step 1, all input objects in the outer membrane are
moved into the inner membrane. Since the P system in
the paper is asynchronous, we cannot move the input
objects in parallel, and input objects are moved one by
one applying following two sets of evolution rules.

(Evolution rules for the outer membrane)

ROUT,1 = {⟨e1,1, F ⟩[]2 → [⟨M2,1⟩⟨e1,1, F ⟩]2}
∪ {⟨Mi,j⟩⟨ei,j , V ⟩[]2 → [⟨Mi+1,j⟩⟨ei,j , V ⟩]2

| 1 ≤ i ≤ n, 1 ≤ j ≤ n, V ∈ {T, F}}}
∪ {⟨Mi,n+1⟩⟨vi⟩[]2 → [⟨Mi+1,n+1⟩⟨vi⟩]2

| 1 ≤ i ≤ n}
∪ {⟨Mn+1,j⟩ → ⟨M1,j+1⟩ | 1 ≤ j ≤ n+ 1}
∪ {⟨M1,n+2⟩ → ⟨OUT ⟩⟨C⟩,

⟨C⟩[]2 → [⟨C1,1⟩]2}

(Evolution rules for the inner membrane)

RIN,1 = {[⟨Mi,j⟩]2 → []2⟨Mi,j⟩
| 2 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

In the above evolution rules, object ⟨e1,1, F ⟩ starts the
computation, and two kinds of input objects are moved
into the inner membrane using object ⟨Mi,j⟩. At the end
of Step 1, two objects, ⟨OUT ⟩ and ⟨C⟩, are created in the
outer membrane. The created object ⟨OUT ⟩ is used for
outputting an object that denotes “TRUE” or “FALSE”
at the end of the final step. The other created object ⟨C⟩
is sent into the inner membrane as ⟨C1,1⟩, and the object
triggers computation of Step 2.

We next explain details of Step 2. Step 2 consists of
sub-steps (2-1) and (2-2). At the beginning of Step 2, the
following evolution rule is executed for setting status of
the start vertex v1 to visited.

RIN,(2-0) = {⟨C1,1⟩⟨v1⟩ → ⟨C2,1⟩⟨λ1⟩⟨z1,1⟩}

In the evolution rules, object ⟨λj⟩ denotes that vertex
vj is visited, and object ⟨zi,j⟩ denotes that i-th vertex in
the permutation is vj .

In (2-1), unvisited vertex is selected as a next vertex,
and the next vertex is added to the partial permutation
of vertices in case that there is an edge from the last
vertex in the permutation to the next vertex. (The partial
permutation denotes a path from a start vertex.) The (2-
1) is executed using the following set of evolution rules.
The partial permutation with the next vertex is created by
dividing the inner membrane with the first set of evolution

– 77 –

rules, and the unvisited next vertex is selected using the
second set of evolution rules.

RIN,(2-1-1) = {[⟨zk−1,i⟩⟨Ck,j⟩⟨vj⟩⟨ei,j , T ⟩]2
→ [⟨zk−1,i⟩⟨Ck,j+1⟩⟨vj⟩⟨ei,j , T ⟩]2

[⟨zk−1,i⟩⟨Ck+1,1⟩⟨zk,j⟩⟨λj⟩]2
| 2 ≤ k ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

∪{⟨Ck,j⟩⟨λj⟩ → ⟨Ck,j+1⟩⟨λj⟩
| 2 ≤ k ≤ n, 1 ≤ j ≤ n}

On the other hand, in (2-1), the partial permutation
is discarded in case that there is no edge from the last
vertex to the next vertex. In this case, membrane division
is executed to select another next vertex, and the an
object that denotes “FALSE” is outputted by applying
the following set of evolution rules.

RIN,(2-1-2) = {[⟨zk−1,i⟩⟨Ck,j⟩⟨vj⟩⟨ei,j , F ⟩]2
→ [⟨zk−1,i⟩⟨Ck,j+1⟩⟨vj⟩⟨ei,j , F ⟩]2

[⟨FALSE, n− k⟩]2
| 2 ≤ k ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

∪{[⟨FALSE, n− k⟩]2
→ []2⟨FALSE, n− k⟩
| 2 ≤ k ≤ n}

In the above evolution rules, object ⟨FALSE, n− k⟩ is
created to count the number of “FALSE” in Step 3.

In (2-2), the created permutation of vertices is checked
whether the permutation denotes a Hamiltonian cycle. In
the following two sets of evolution rules, the first set is
applied for outputting an object that denotes “TRUE” in
case that there exist an edge from the last vertex in the
permutation to the start vertex. Otherwise, the second set
is applied for outputting an object that denotes “FALSE”.

RIN,(2-2) = {[⟨Cn+1,1⟩⟨zn,i⟩⟨ei,1, T ⟩]2
→ []2 ⟨TRUE⟩ | 1 ≤ i ≤ n}

∪{[⟨Cn+1,1⟩⟨zn,i⟩⟨ei,1, F ⟩]2
→ []2 ⟨FALSE, 0⟩ | 1 ≤ i ≤ n}

We now summarize the set of evolution rules for Step
2 as follows.
(Evolution rules for the inner membrane)

RIN,2 = RIN,(2-0) ∪RIN,(2-1-1) ∪RIN,(2-1-2) ∪RIN,(2-2)

In Step 3, a final result is sent out from the outer
membrane. The Step 3 is executed applying the following
sets of evolution rules.

(Evolution rules for the outer membrane)

ROUT,3 = {{[⟨TRUE⟩⟨OUT ⟩]1 → []1⟨TRUE⟩}
∪{⟨FALSE, k⟩k+1 → ⟨FALSE, k + 1⟩

| 0 ≤ k ≤ n− 2}
∪{{[⟨FALSE, n− 1⟩⟨OUT ⟩]1

→ []1⟨FALSE⟩}

If object ⟨TRUE⟩ is in the outer membrane, there is a
Hamiltonian cycle in the input graph, and the object is
sent out from the outer membrane immediately applying
the first evolution rules. On the other hand, objects that
denotes “FALSE” is outputted from all inner membranes
in case that the final result is “FALSE”. Therefore, the
sum of “FALSE” is counted asynchronously using the
second set of evolution rules, and final object ⟨FALSE⟩
is outputted if and only if all outputs of inner membranes
are “FALSE”.

We now summarize the asynchronous P system ΠBB−HC

for solving Hamiltonian cycle as follows.

ΠBB−SAT = (O,µ, ω1, ω2, ROUT , RIN)

• O = OV ∪OE∪OTRUE∪OFALSE∪OM∪OC∪Oλ∪Oz

• OTRUE = {⟨TRUE⟩}
• OFALSE = {⟨FALSE⟩}∪{⟨FALSE, k⟩ | 1 ≤ k ≤ n}
• OM = {⟨Mi,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
• OC = {⟨Ci,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
• Oλ = {⟨λj⟩ | 1 ≤ j ≤ n}
• Oz = {⟨zi,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
• µ = [[]2]1
• ω1 = ω2 = ϕ
• ROUT = ROUT,1 ∪ROUT,3, RIN = RIN,1 ∪RIN,2

D. Complexity of the P system
We now consider the complexity of asynchronous P

system ΠBB−HC . Since O(n2) objects are moved from the
outer membrane into the inner membrane sequentially,
Step 1 can be executed in O(n2) parallel or sequential
steps using O(n2) kinds of objects and O(n2) kinds of
evolution rules.

In Step 2, O((n − 1)!) membranes are created in the
worst case, and evolution rules are applied sequentially at
most O(n) times in each membrane. Therefore, Step 2 can
be executed in O(n2) parallel steps and O(n!) sequential
steps using O(n3) kinds of objects and O(n3) kinds of
evolution rules.

In the final step, O(n) evolution rules are applied
sequentially in cast that the output is “FALSE”, and
Step 3 can be executed in O(n) parallel step or O(n)
sequential step using O(n) kinds of objects and O(n) kinds
of evolution rules.

Therefore, we obtain the following theorem for the
asynchronous P system ΠBB−HC .

Theorem 1: The asynchronous P system ΠBB−HC ,
which computes Hamiltonian cycle for a directed graph

– 78 –

Fig. 4. Experimental results

with n vertices, works in O(n!) sequential steps or O(n2)
parallel steps by using O(n2) types of objects and evolution
rules of size O(n2). □

IV. Experimental simulations

We develop an original simulator for asynchronous
P systems using Python, and compare the numbers of
membranes used in executions of an existing P system
[17] and our proposed P system for Hamiltonian cycle
ptoblem.

Since the simulator executes P systems with asyn-
chronous parallelism, all of the evolution rules are applied
in fully asynchronous manner, in other words, any number
of applicable evolution rules are applied in each step of
executions on the simulator. Therefore, applied evolution
rules are different among executions on the simulator, and
output of the simulation may be different for the same
input. We first implement the existing P system and the
proposed P system for Hamiltonian cycle problem on the
simulator, and execute simulations for various inputs. In
the simulation, valid results are obtained for all inputs. In
other word, all outputs are the same for the same input
on all executions.

Next, we compare the number of membranes used
on the existing P system and the proposed P system
for Hamiltonian cycle problem. For each the number of
vertices n (4 ≤ n ≤ 7), 10 inputs are randomly created,
and the existing P system and the proposed P system are
simulated for the given inputs.

Figure 4 shows that average values of the number of
membranes on the simulation. The number of membranes
of the existing P system increases exponentially to the
number of vertices n. Although the number of membranes
on the proposed P system also increases according to n,
the number of membranes on the proposed P system is
more than 70 percent less than the number of membranes
on the existing P system for each n (3 ≤ n ≤ 7).

V. Conclusions
In this paper, we proposed the asynchronous P system

with branch and bound for solving Hamiltonian cycle. The
P system with branch and bound reduces the number
of membranes by discarding partial permutations that
cannot be Hamiltonian cycle.

The proposed P systems are fully asynchronous, and
works in a polynomial number of steps in the maximal
parallel manner and also works sequentially. Although
the number of sequential steps is a factorial of the
number of vertices, the result means that the proposed
P system works for any combinations of sequential and
asynchronous applications of evolution rules, and guaran-
tees that the P systems can output a correct solution in the
case that any number of evolution rules are synchronized.

We experimented with the proposed P system and the
existing P system, and the experimental results show that
the proposed P system outputs valid results, and also
show that the number of the membrane on the proposed
P system is at most 70 percent less than the number
of membranes on the existing P system for Hamiltonian
cycle.

In our future research, we are considering reduction of
the number of objects and evolution rules used in the pro-
posed P system. We are also considering asynchronous P
systems with branch and bound for other computationally
hard problems.

VI. Acknowledgments
This research was partially supported by JSPS

KAKENHI, Grand-in-Aid for Scientific Research (C),
16K00021.

References
[1] R. Freund. Asynchronous P systems and P systems working in

the sequential mode. In International workshop on Membrane
Computing, pages 36–62, 2005.

[2] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-
Núñez. A fast P system for finding a balanced 2-partition. Soft
Computing, 9(9):673–678, 2005.

[3] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J.
Romero-Campero. A uniform solution to SAT using membrane
creation. Theoretical Computer Science, 371(1-2):54–61, 2007.

[4] J. Imatomi and A. Fujiwara. An asynchronous P system for
MAX-SAT. In 8th International Workshop on Parallel and
Distributed Algorithms and Applications, pages 572–578, 2016.

[5] Y. Jimen and A. Fujiwara. Asynchronous P systems for hard
graph problems. International Journal of Networking and
Computing, 8(2):141–152, 2018.

[6] A. Leporati, C. Zandron, and G. Mauri. Solving the factor-
ization problem with P systems. Progress in Natural Science,
17(4):471–478, 2007.

[7] V. Manca. DNA and membrane algorithms for SAT. Funda-
menta Informaticae, 49(1-3):205–221, 2002.

[8] T. Murakawa and A. Fujiwara. Arithmetic operations and
factorization using asynchronous P systems. International
Journal of Networking and Computing, 2(2):217–233, 2012.

[9] L. Q. Pan and A. Alhazov. Solving HPP and SAT by P systems
with active membranes and separation rules. Acta Informatica,
43(2):131–145, 2006.

[10] G. Păun. Computing with membranes. Journal of Computer
and System Sciences, 61(1):108–143, 2000.

– 79 –

[11] G. Păun. P systems with active membranes: Attacking NP-
complete problems. Journal of Automata, Languages and
Combinatorics, 6(1):75–90, 2001.

[12] G. Păun. Introduction to Membrane Computing. Springer,
2006.

[13] M. J. Pérez-Jiménez and A. Riscos-Núñez. A linear-time
solution to the knapsack problem using P systems with active
membranes. Membrane Computing, 2933:250–268, 2004.

[14] M. J. Pérez-Jiménez and A. Riscos-Núñez. Solving the subset-
sum problem by P systems with active membranes. New
Generation Computing, 23(4):339–356, 2005.

[15] M. J. Pérez-Jiménez and F.J. Romero-Campero. Solving the
BIN PACKING problem by recognizer P systems with active
membranes. In The Second Brainstorming Week on Membrane
Computing, pages 414–430, 2004.

[16] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-
Caparrini. A polynomial complexity class in P systems using
membrane division. Journal of Automata, Languages and
Combinatorics, 11(4):423–434, 2003.

[17] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle
problem using asynchronous p systems. IEICE Transactions on
Information and Systems (Special section on Foundations of
Computer Science), E95-D(3), 2012.

[18] K. Tanaka and A. Fujiwara. Asynchronous P systems for
hard graph problems. International Journal of Networking and
Computing, 4(1):2–22, 2014.

[19] C. Zandron, C. Ferretti, and G. Mauri. Solving NP-complete
problems using P systems with active membranes. In Uncon-
ventional Models of Computation, pages 289–301, 2000.

– 80 –

