
Disk I/O Control Mechanism for Online and Batch

Processing

Masanori Tanabe

Graduate School of Natural

Science and Technology,

Okayama University

Okayama, Japan

tanabems@s.okayama-u.ac.jp

Yoshinari Nomura

Graduate School of Natural

Science and Technology,

Okayama University

Okayama, Japan
nom@cs.okayama-u.ac.jp

Kazutoshi Yokoyama

School of Information,
Kochi University of

Technology

Kochi, Japan

yokoyama.kazutoshi@koch
i-tech.ac.jp

Takashi Nagao

Graduate School of Natural
Science and Technology,

Okayama University

Okayama, Japan

takashi.nagao.xu@hitachi.c

om

Hiedo Taniguchi

Graduate School of Natural
Science and Technology,

Okayama University

Okayama, Japan

tani@cs.okayama-u.ac.jp

Abstract — Some IT systems, including banking systems,

perform workload cycles on a daily basis. These workloads are

composite workloads of online and batch processing. To separate

the impact of these two workloads, typical banking systems

employ individual computers dedicated to each type of workload.

Since each dedicated system is designed to fit the peak times of

their respective tasks, it is difficult to optimize the scale of the

system as a whole. In this paper, we propose an effective method

for maximizing disk I/O performance under composite workloads.

Our basic idea depends on the fact that online workloads and

batch workloads (1) have different peak times in a day, and (2)

have different I/O patterns and lengths of disk access.

Keywords — disk I/O control, I/O scheduling, online processing,

batch processing

I. INTRODUCTION

IT systems, like those used in banking systems, have two
types of workloads: online processing workloads and batch
processing workloads. Online processing workloads are short-
time processing tasks that should be executed quickly by
answering user’s request. It is difficult to predict the number of
online processing workloads. On the other hand, batch
processing workloads are executed preemptively. Therefore,
online processing workloads require elastic resource allocation
while batch processing workloads require statically optimal
resource allocation.

To handle these composite workloads, typical banking
systems employ individual computers dedicated to each type of
workload. Since each dedicated system is designed to fit the
peak times of their respective tasks, it is difficult to optimize
the scale of the system as a whole. However, we believe that
executing online processing workloads and batch processing
workloads on a single computer is possible if we schedule the
workloads carefully. Basically, the two workloads have
different peak times in a day (shown in Figure 1); if not, it is

crucial to reduce the impact of batch processing workloads on
the response time of online processing workloads. Therefore, it
is important to prioritize the scheduling of online processing
workloads over batch processing workloads. The scheduling of
composite workloads using conventional priority control on a
CPU will not work well because resource conflicts stem not
from the CPU but from disk I/O requests. When the I/O request
of batch processing workload is invoked before online
processing, the online processing workload will be suspended
for long time.

In this paper, we present how the disk I/O requests of batch
processing workloads influence online processing workloads
within composite workloads. We also propose a new disk I/O
control mechanism that gives high-priority to I/O requests of
online processing workloads. This mechanism reduces the
waiting time of I/O requests of online processing workloads.

II. A SYSTEM ENVIRONMENT TO EXECUTE ONLINE PROCESSING

WORKLOADS AND BATCH PROCESSING WORKLOADS

A. Delay of an I/O request to a disk

The execution time of online processing workloads should
be short because the response time directly impacts the quality

Fig1. The utilization of the computer resources in a day.

6:00 12:00 18:00 0:00 24:00

A peak time of online processing workloads
is usually different from that of batch
processing workloads.

Time period
of batch
processing
workloads

Time period of
online processing
workloads

Time period
of batch
processing
workloads

Time period
of batch
processing
workloads

T
h
e

n
u
m

b
er

 o
f

o
n
li

n
e

p
ro

ce
ss

in
g

w
o
rk

lo
ad

s
an

d
 b

at
ch

 p
ro

ce
ss

in
g

w
o
rk

lo
ad

s

time

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 2, pages 87–92, July 2019

– 87 –

mailto:tanabems@s.okayama-u.ac.jp
mailto:takashi.nagao.xu@hitachi.com
mailto:takashi.nagao.xu@hitachi.com

of the user experience. Therefore, online processing workloads
often use CPUs for a short time and emit smaller disk I/O
requests. On the other hand, the I/O requests and CPU usage of
batch processing workloads are larger than that of online
processing workloads. Therefore, not only priority control of the
CPU but also priority control of I/O requests are necessary to
guarantee the response time of online processing workloads. For
example, when a batch processing workload requests a disk I/O
that has a long execution time, the online processing workload
will have to wait for this to be finished because the disk driver
cannot handle I/O requests in parallel. Figure 2 shows this
situation. In the figure, the online processing (CPU) workload
and batch processing (CPU) workload execute their tasks by
sharing the single CPU resource. The batch processing (CPU)
workload calls the disk driver to execute an I/O request, and the
disk driver handles the I/O request. Right after this I/O request,
the online processing (CPU) workload also calls the disk driver.
However, the I/O request of the online processing (CPU)
workload is blocked until disk I/O of the batch processing
workload is finished. To remedy this situation, we can assign the
online workload a high CPU priority, which gives it a chance to
call the disk driver prior to other batch I/O requests. However,
when the disk I/O is emitted by the batch workload by chance,
then the CPU priority will not work because the disk I/O is
completely serialized on a first-come, first-served basis.
Therefore, it is required to establish a disk I/O control
mechanism to prioritize particular I/O requests.

III. EXECUTION TIME OF THE I/O REQUESTS WITH DIFFERENT

LENGTH OF DATA

A. Comparison of the I/O requests

The typical flow of one transaction in an online processing
proceeds as follows: (1) the contents of the user's request are
written on a disk; (2) the process is executed; (3) the results are
written on a disk; and (4) the results are returned to the user.
For the batch processing, (1) the process is executed, and (2)

TABLE I. SPECIFICATIONS OF THE COMPUTER.

CPU Intel i5 3.2GHz 4 cores

No hyper-threading

Disk for

data

I/O path SATA3.0

DISK
7,400 RPM

32MB cache

File system UFS

Cache of file

system
Not use

OS FreeBSD 11.0-RELEASE-p1

and the results are written on a disk repeatedly.

The length of data that batch processing workloads write on
a disk is different from that of online processing workloads. As
shown in Figure 3(A), the lengths of most data written by online
processing workloads are less than 1,000 bytes. In contrast,
Figure 3(B) shows that the length of data written by batch
processing workloads range from over one million to several
hundred million bytes.

B. Analyzing relation between size of data and processing

time of I/O request Units

 Table I shows the specifications of the computer we used to
measure the relation between the length of the data and
processing time.

C. Evaluation programs

We prepared two evaluation programs based on the
characteristics of online processing workloads and batch
processing workloads described in Section III(A). Figure 4(A)
shows the flow of the pseudo online transaction program of the
online processing workload. It consists of writing the contents
of a request on a disk, executing a process for the request,
writing data of the results on a disk, and finally returning the
results to the user. This pseudo online transaction program is
executed repeatedly. Figure 4(B) shows the flow of the pseudo
batch processing program. It repeats the execution of a process
and writes data (twice) on a disk. When the pseudo batch
processing program writes data on the disk, it writes large data
on the disk twice.

The pseudo online transaction program writes 1,000 bytes
for each I/O request. The batch transaction program writes one
million bytes each.

We determine the number of transactions of the pseudo
online transaction program and the number of times the pseudo

Online processing

(CPU) workload

Bach processing

(CPU) workload

Disk driver

Fig. 2. I/O requests and delay of processing.

Online processing (CPU)

workload is delayed.

I/O requests

Fig. 3. Distribution of length of data.

Length of data（byte）

（A） Online processing workloads

0

500,000

1,000,000

1,500,000

T
h
e

n
u
m

b
er

 o
f

th
e

o
n
li

n
e

p
ro

ce
ss

in
g
 w

o
rk

lo
ad

s

0

100

200

300

400

T
h
e

n
u
m

b
er

 o
f

th
e

b
at

ch

p
ro

ce
ss

in
g
 w

o
rk

lo
ad

s

Length of data（byte）

(B) Batch processing workloads

– 88 –

batch processing program is repeated based on the following
assumptions: (1) CPU time of the pseudo online transaction
program and pseudo batch processing program is equal to the
time to write all of the data; and (2) the pseudo online transaction
program and pseudo batch processing program are executed at
the same time slot. Specifically, we determine that the number
of transactions of the pseudo online transaction program is 50,
and the number of repetition times of the pseudo batch
processing program is five. In the case of the pseudo online
transaction program, if the CPU time is 0 s, then the execution
time to write all the data is 92.63 ms when the pseudo online
transaction program executes the transactions 50 times. In other
words, the time to write data on the disk for one transaction is
1.85 ms. In the pseudo batch processing program, if the CPU
processing time is 0 s, then the execution time to write data on
the disk five times is 297.05 ms. In other words, the execution
time to write data on the disk (twice) is 59.41 ms. We determine
that the execution time (CPU) of the pseudo online transaction
program (one transaction) is 2 ms while that of the pseudo batch
processing program is 60 ms because we assume that the time to
execute both pseudo programs are almost equal to the time for
both pseudo programs to write data. In addition, we determine
that the execution time to return a result is 0 ms because it is
simpler than others. The execution time of the pseudo online
transaction program with 50 transactions is 192.5 ms. The
execution time of the pseudo batch processing program with five
repetitions is 597.05 ms.

D. Results of the execution

Figure 5 shows the results of the evaluation, i.e., the time
elapsed to write 1,000 bytes of data. We also performed the same
evaluation by changing the parallelism of the transactions (1, 2,
5, and 10).

As the number of concurrencies of pseudo online transaction
programs increase, the performance to write data decreases. On
the other hand, pseudo batch processing programs are not
affected by the concurrency. With the increase in the number of

pseudo batch processing programs, the number of write() system
calls with long execution time increase. Consequently, the disk
driver is occupied with the workloads of batch processing
programs. In other words, the possibility of the workloads of
pseudo online transaction programs getting stuck is increased.

In the case of the 1,000-bytes transaction with the single
concurrency program, the execution time is 1.23 ms in Figure 5.
In the case of one million bytes of data, it becomes 0.032 ms per
1,000 bytes. For simple calculations, these two should be same.
However, this depends on the length of whole data. Therefore,
the I/O throughput will be good when the length of data to write
at once is long.

When batch processing workloads to write long-length data
at once and online processing workloads to write short-length
data are executed on the same computer, the execution time of
the I/O request of online processing workloads becomes longer
as the number of requests increase, and the response time
becomes worse.

IV. THE DISK I/O CONTROL MECHANISM

A. Execution Control of I/O requests

When online processing workloads and batch processing
workloads are executed on the same computer, the online
processing workload, which has I/O requests with short-length
data, is often encumbered by the batch processing workload.
Thus, we focus on the fact that the length of data of the online
processing workloads is short. We propose an execution control
mechanism for I/O requests, which executes I/O requests with
short-length data with high priority. That is:

1. If the data length is short, it should have high priority (= I/O
requests of online processing).

2. If the data length is long, it should have low priority (= I/O
request of batch processing)

Figure 6 shows the structure of the execution control
mechanism of the I/O requests.

1) I/O queues for I/O requests
We have two types of queues classified according to I/O

length. The I/O request is inserted into the queue which
corresponds to the data length. To classify each request, the
argument of the write() system call will be captured.

Fig. 4. Flow of evaluation programs.

（A） Online transaction

program

 (one transaction)

（B） Batch processing

program

Start

Write contents of a

request

Execute a process of the

request

Write contents of the

result

End

Start

Execute a process

Write contents of the

result (twice)

End

Finished executing
a process?

No

Yes

Return the result

Fig.5 The relation between the number of workloads and the
average time to write 1,000 bytes of data.

0.0

5.0

10.0

15.0

20.0

25.0

0 2 4 6 8 10

T
im

e
to

 w
ri

te
 d

at
a

(m
il

li
se

co
n
d
s)

The number of the worklods

Pseudo online transaction

program

Pseudo batch processing

program

– 89 –

2) Divide I/O requests into pieces of short-length data
By dividing the data, we can shorten the execution time of

each I/O request. As a result, this mechanism can reduce cases
where the long-data disk I/O blocks other I/O requests. In other
words, we can shorten the waiting time of the I/O requests of
online workloads.

3) Priority control of I/O requests
The priority control takes an I/O request out of a queue and

sends it to a disk driver. If there are I/O requests in the queue
for short-length data, the priority control takes the I/O request
out of the queue for short-length data. If there is no I/O request
in the queue for short-length data, then the priority control takes
the I/O request out of the queue for long-length data.

V. EVALUATION USING A SIMULATION MODEL

A. Evaluation points

Under the situation in which a lot of I/O requests occur, the
waiting time for executing the I/O request and disk busy rate
increase. Therefore, we evaluate following:
1. Disk busy rate and elapsed time to execute I/O requests.
2. Disk busy rate and elapsed time to wait for starting execution

of I/O requests.

We consider three cases of disk busy rate: high rate, low rate,
and middle rate. We define the disk busy rate as the ratio of the
amount of time assigned to drive the I/O bus out of the whole
execution time.

We evaluate following three types of controls for above-
mentioned 1 and 2 in our simulation model.

1. No priority control
2. Priority control of the CPU (online workload has high

priority)
3. Priority control of both CPU and I/O requests (online

workload has high priority).

B. Assigned computer resouce

We determine the maximum dividing length of I/O request,
where the elapsed time to write data is nearly equal to the time
to execute the I/O request of 1,000 bytes. Specifically, in our
measurement environment, the time to write 1,000 bytes of data
is 0.926 ms and the time to write 10,000 bytes of data is 1.26

ms. Thus, we determine that the length of data into which an
I/O request is divided is 10,000 bytes of data. The computer
using in our simulation model has four CPUs and a single I/O
path. We set the time to write 1,000 bytes and 10,000 bytes of
data as 1 ms.

We describe below the rules of the CPU and I/O path
allocation in our simulation model.

1) Rules of CPU allotment
(A) When multiple tasks are awaiting CPU allotment, the tasks

are assigned to the CPU in a first in, first out (FIFO) manner.
(B) The CPU time slice is 10 ms. The next awaiting task is

assigned to the CPU in a unit of 10 ms.
(C) Tasks have CPU affinity; thus, when a task is scheduled for

the first time, it can be freely assigned to any vacant CPU.
But once it is bound to a specific CPU, it should be fixed to
that same CPU.

2) Rules of I/O path allotment
(A) If execution of the I/O requests are required from multiple

tasks simultaneously, these are handled in the order of FIFO.
(B) The time slice of an I/O path is 1 ms. An I/O request is

assigned to the I/O path in a unit of 1 ms if there are other
pending I/O requests.

C. CPUs and I/O path Allotment using the priority control

We apply the priority control of CPUs and I/O path
allotment. We describe the rules of priority control below.

1) Rules for priority control of CPU allotment
(A) When multiple tasks are awaiting CPU allotment

simultaneously, the tasks with high CPU priority are
assigned. If there are multiple tasks with the same priority,
then these are handled in FIFO order.

2) Rules for priority control of I/O path allotment
(A) If execution of the I/O requests are required from multiple

tasks awaiting I/O path allotment simultaneously, then the
I/O request of the task with high priority is assigned to the
I/O path.

(B) The priority of I/O requests is compared. If the priority of
I/O requests is same, these are handled in FIFO order. If the
I/O request has a high priority, it is assigned to the I/O path.

D. Simulation model

Table II shows our model of online processing workloads.
The online processing workloads use the same simulation
model with the three cases of disk busy rate. Banking IT
systems are usually designed to have a margin of CPU
utilization because online processing workloads are executed
based on the demands of many users, and the workloads for
computer resources cannot be assigned preemptively.
Therefore, we determine the start timing of the online
processing workloads so that CPU utilization of online
processing workloads is approximately 50% for the cases of our
simulation model. We show models of the batch processing
workloads of case 1 (low disk busy rate), case 2 (middle disk
busy rate), and case 3 (high disk busy rate) in Table III. We
realize that the increase or decrease of the disk busy rate
changes the total length of data, which is the I/O request of
batch processing workload. The length of data of the I/O
request is divided into pieces of data which are assumed to be
10,000 bytes.

 Queue for short-length

data

Queue for long-length

data

Disk driver

I/O queues to wait for

executing I/O requests

Priority Control for I/O requests

Divide

I/O requests

into short-

length data

Priority

control of

I/O requests

Write() System call

Fig.6. Disk I/O control mechanism for I/O requests to a disk.

– 90 –

E. Results

Table IV shows the disk busy rate and total CPU utilization
of each case. Table V shows the CPU utilization of the online
processing workloads and batch processing workloads.

1) Evaluation 1 (The average execution time)
Figure 7 shows the average execution time of the online

processing workloads and batch processing workloads of each
case. We make the following observations from Figure 7.

(A) The average execution time of online processing workloads
improved for cases 1 to 3 using the priority control for I/O
requests. In order of case 1, case 2 and case 3, the average
execution time of online processing workloads in case 3 is the
longest with the no priority and only CPU priority controls. In
other words, this shows that the average execution time of
online processing workloads tends to be longer as the disk busy
rate rises in cases of the no priority and only CPU priority
controls. This is because the execution time of the I/O requests
of batch processing workloads increases and the number of
online processing workloads that wait a long time for the
execution of I/O requests increases. On the other hand, in the
case of CPU+I/O priority control, there is a slight increase in
the average execution time of online processing workloads in
cases 1 to 3.

(B) With regard to the batch workloads, the average execution
time using only CPU priority control or CPU+I/O priority
control is longer compared with the average execution time
using no priority control for all three cases. In addition, the
average execution time of the only CPU priority control is
slightly different from the CPU+I/O priority control in cases 1
to 3. Table V shows the comparison of CPU utilization of batch
processing workloads with only CPU priority control and

TABLE II. MODEL OF ONLINE PROCESSING WORKLOAD.

Processing time 100 ms

Interval of I/O

requests

One time at starting and ending of

processing

Number of I/O

requests
two times

Length of data to

write at a once
1,000 bytes

TABLE III. MODEL OF BATCH PROCESSING WORKLOAD.

 Case 1 Case 2 Case 3

Disk Busy Rate Low Middle High

Processing time 10 s

Interval of the I/O

requests
Equal distance

Number of the

writing times of

the I /O requests

20 times (once in 0.5 s)

Sum of the

processing time of

the I/O requests

1,000 ms 2,000 ms 4,000 ms

Total length of

data

10,000,000

bytes

20,000,000

bytes

40,000,000

bytes

Length of data to

write at a once

500,000

bytes

1,000,000

bytes

2,000,000

Bytes

Divided length of

data

10,000

bytes

10,000

byes

10,000

bytes

TABLE IV. DISK BUSY RATE AND TOTAL CPU UTILIZATION.

 Case 1 (%) Case 2 (%) Case 3 (%)

DISK CPU DISK CPU DISK CPU

No priority 23.5 97.3 40.0 95.5 72.2 91.1

Only CPU

priority
16.5 80.0 28.2 79.5 53.7 80.3

CPU＋I/O

priority
16.4 80.0 27.9 79.6 52.8 80.0

TABLE V. CPU UTILIZATION (ONLINE PROCESSING WORKLOAD AND BATCH

PROCESSING WORKLOAD).

ON: online processing workload, BT: batch processing workload

 Case 1 (%) Case 2 (%) Case 3 (%)

ON BT ON BT ON BT

No priority 49.8 47.5 50.2 45.3 49.9 41.2

Only CPU

priority
50.0 30.0 53.5 26.0 49.3 31.0

CPU+I/O

priority
50.0 30.0 50.0 29.6 50.0 30.0

CPU+I/O priority control. The CPU utilization is lower for the
no priority control. In other words, this shows that the CPU
allotment for batch processing workloads decreases because the
CPU allotment for online processing workloads increases. The
average execution time using I/O priority control does not
increase. In other words, the I/O priority control does not
influence the average execution time of batch processing
workloads.

2) Evaluation 2 (The average waiting time until start of
execution of the I/O request)

Figure 8 shows the average waiting times until the start of
execution of the I/O requests of online processing workloads
and batch processing workloads. We make the following
observations from Figure 8.

(A) The average waiting time until start of execution the I/O
request of online processing workloads is 0.4 ms in the case of

Fig. 7. The average execution time.

T
h
e

av
er

ag
e

ex
ec

u
ti

o
n

ti
m

e
(m

il
li

se
co

n
d
s)

0

100

200

300

400

Case 1 Case 2 Case 3

(A) Online workload

No priority control
CPU priority only
CPU + I/O priority control

T
h
e

av
er

ag
e

ex
ec

u
ti

o
n

ti
m

e
(s

ec
o
n
d
s)

0

10

20

30

Case 1 Case 2 Case 3

(B) Batch workload

No priority control

CPU priority only

CPU+I/O priority contorl

– 91 –

CPU+I/O priority control. The average waiting time do not
increase in cases 1 to 3. However, the waiting times of the no
priority control and only CPU priority control becomes worse.
In other words, the CPU+I/O priority control has a significant
effect on average waiting time until the I/O request of online
processing workloads is executed when the disk busy rate is
high.

(B) The average waiting time until the I/O request of batch
processing workloads is executed do not differ in cases 1, 2, and
3. In addition, the average waiting time of the I/O requests using
CPU+I/O priority control is shorter than the only CPU priority
control. Therefore, CPU+I/O priority control affects the
average waiting time of I/O request in batch processing
workload. However, in case 2, the average waiting time of the
I/O request using the CPU+I/O priority control becomes
slightly longer compared with only CPU priority control.
Depending on the timing of CPU allotment, the waiting time of
I/O requests might increase.

VI. RELATED WORK

Some subjects related to I/O requests in virtual machine
environments have been investigated [1][2][3][4][5]. These
studies clarified the effectiveness of priority control. However,
the priority control of I/O requests in virtual machine
environments is intended to bring the utilization rate of I/O paths
closer to a utilization value assigned beforehand, and to reduce
the influence on other virtual machine environments. Thus, the
goal of these studies is different from the priority control of
applications. A method was proposed to reduce the waiting time
of I/O requests in consideration of the property of application or
the execution time of I/O requests [6]. The proposed methods
does not solve the problems of I/O requests of online processing
workloads. Rather, it aims to improve the execution time of
online processing workloads by predicting a processing flow
using a characteristic of an application and by controlling

interruptions of the time slice assigned to the CPU [7]. However,
the priority control of I/O requests is also needed to improve the
utilization of computer resources. Therefore, controlling the
execution time of the I/O requests was proposed by coordinating
their execution time [8]. In this proposal, the execution time of
I/O requests was coordinated as the I/O request with high
priority was executed with precedence. Then, this proposal
showed that the waiting time of I/O requests with high priority
becomes shorter. However, because the performance of the
response time and processing throughput are important for IT
systems, the performance deterioration by coordinating the
execution time of I/O requests causes problems.

VII. CONCLUSION AND FUTURE WORK

Online processing workloads are not executed with
precedence in systems with online processing workloads and
batch processing workloads. We focused on the fact that the
length of data of online processing workloads is short. Using our
simulation model, we showed that it is possible to reduce the
execution time of online processing workloads with a disk I/O
control mechanism.

Batch processing workloads should be divided into pieces of
short-length data to increase the chances of processing online
processing workloads. However, excessive division can
decrease performance. Thus, we need to determine the
appropriate data length.

The implementation and evaluation of the proposed disk I/O
control mechanism will be conducted in future work.

REFERENCES

[1] Filip Blagojević, Cyril Guyot, Qingbo Wang, Timothy Tsai, Robert
Mateescu and Zvonimir Bandić, “Priority IO Scheduling in the Cloud,”
5th USENIX Workshop on Hot Topic in Cloud Computing, June 25–26,
2013.

[2] Mukil Kesavan, Ada Gavrilovska, Karsten Schwan, “On Disk I/O
Scheduling in Virtual Machines,” The 2nd Conference on I/O
Virtualization (WIOV’ 10), March 13, 2010, USA.

[3] Ziye Yang, Haifeng Fang, Yingjun Wu, Chungi Li, Bin Zhao, H. Howie
Huang, “Understanding the Effects of Hypervisor I/O Scheduling for
Virtual Machine Performance Interference,” 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science, 3-6 Dec. 2012.

[4] Kazuhiko Mizuno Takayuki Imada, “I/O Performance Evaluation in the
Virtual Environment and Optimization Method Suggestion,” IPSJ
Computer System symposium, pp. 86–93, 2016 (in Japanese).

[5] Ramon Nou, Jacobo Giralt, Toni Cortes, “Automatic I/O scheduler
selection through online workload analysis,” The 9th IEEE International
Conference on Autonomic and Trusted Computing (ATC 2012), Sep. 4–
7, 2012.

[6] Tatsuya Katagami, Toshihiro Tabata (Yamauchi), Hideo Taniguchi,
“Proposal of I/O Buffer Cache Mechanism Based on the Frequency of
System Call of the File Operation,” IPSJ Transactions on Advanced
Computing Systems Vol. 3 No. 1, pp. 50–60 (Mar. 2010) (in Japanese).

[7] Yoshinori AOKI, Sukanya SURANAUWARAT, Hideo TANIGUCHI,
“A Load Distribution Scheme for a New Transaction Service Considering
the Pre-Loaded Services,” IEICE TRANS. INF. & SYST., Vol. E82-D,
No. 22, Nov. 1999.

[8] Takashi Nagao, Hideo Taniguchi, “Inplementation and Evaluation of
Mechanism for Regulating the Service Time Based on Controlling the
Number of I/O Request,” IEICE Transactions Information and Systems,
D Vol. J94-D, No. 7, pp. 1047–1057 (in Japanese).

0

25

50

75

100

Case 1 Case 2 Case 3

T
h
e

av
er

ag
e

w
ai

ti
n
g
 t

im
e

(m
il

li
se

co
n
d
)

(B) Batch processing workloads

No priority control

CPU priority control

CPU+I/O priority control

0

25

50

75

100

Case 1 Case 2 Case 3

T
h
e

av
er

ag
e

w
ai

ti
n
g
 t

im
e

(m
il

li
se

co
n
d
)

(A) Online processing workloads

No priority control

CPU priority only

CPU+I/O priority control

Fig.8. The average waiting time of the I/O requests.

– 92 –

