
A Two-Opt Collective-Communication Method for
Low-Latency Random Network Topologies

Ke Cui
School of Multidisciplinary Sciences

The Graduate University for Advanced Studies
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

cuike@nii.ac.jp

Michihiro Koibuchi
Information Systems Architecture Science Research Division

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

koibuchi@nii.ac.jp

Abstract—Random network topologies have been proposed as
low-latency network for parallel-computing systems. Although
their unicast routing algorithms have been well researched,
collective communication methods that consist of a large number
of unicasts are not well optimized for random network topologies.
In this study, we apply a two-opt method to collective communica-
tion on random network topologies. It attempts to minimize the
execution time of collective communication. Simulation results
interestingly show that our collective communication using the
two-opt operation outperforms by up to 15% in terms of network
latency the existing topology-agnostic collective communications
that attempt to minimize the number of network contentions and
those used in MPI implementations.

Index Terms—Collective communication, random network
topology, interconnection network, high performance computing
(HPC)

I. INTRODUCTION

The communication latency is one of performance bottle-
necks for large parallel systems. Today’s large supercomputers
have hundreds of thousands of compute nodes, and the latency
in the communication affects the overall performance of the
system. To reduce the communication latency, the network
topology of a parallel system should have low diameter and
low average shortest path length (ASPL). However, a few
network topologies, i.e. fat tree, torus, Dragonfly [1], [2], [3],
have been used to interconnect compute nodes in parallel-
computing systems. They have large ASPLs than the theoret-
ical lower bounds for a given pair of nodes and degree [4]. In
this context, random network topology has been considered
for obtaining low diameter and low ASPL [5], so applying
random network topology to parallel systems would improve
system performance.

There are a large number of studies on unicast routing
algorithms on arbitrary network topologies that include ran-
dom network topologies [6]. However, collective communi-
cations are not well considered for random network topolo-
gies. Since collective communications are frequently used in
parallel programs such as FFT(Fast Fourier Transformation)
and CG(Conjugate Gradient) [7], they sometimes dominate
the execution times of the parallel programs.

In this study, we apply the two-opt method to the collective-
communication operation — broadcast. The broadcast op-
eration has been defined in the message passing interface

(MPI) standard. According to the definition of MPI, broadcast
operation MPI Bcast(void* buffer, int count, MPI Datatype
datatype, int root, MPI Comm comm) broadcasts a message
from the rank-root process to all processes of the group, itself
included. [8]

There are many studies to implement those collective
communication operations to improve the performance by
considering the message length [9] or network topologies [10].
In the real product, MPICH2 [11] implements the broadcast
and reduce operation by binomial tree algorithm for short
messages. Through this work, we follow MPICH2 implemen-
tation as default: broadcast operation relies on the binomial
tree algorithm. For binomial tree algorithm of broadcast, the
root sends data to node (root + (N/2)), N is the number of
nodes. This node and the root then act as new roots within
their own subtrees and recursively continue this algorithm.
The total communication takes log⌈N⌉ steps [9]. However,
they are not well optimized in terms of ASPLs of unicasts
that form a binomial tree.

Our main concern is to minimize the low ASPLs of unicasts
that form a binomial tree on random network topologies.
In this context, we apply the two-opt method to minimize
the ASPLs of the unicasts. Then, we perform the broadcast
operation and compare the execution time, if the execution
time of broadcast operation which applied 2-opt method is
smaller, it shows that 2-opt method can minimize the ASPLs.
We pick up two unicasts that form the multicast, then swap
the endpoints of two unicast source-destination pairs if the
multicast algorithm can be completed and if the ASPLs
become lower in this operation. Repeat the procedure until the
ASPLs of unicasts cannot be smaller in the moderate number
of attempts.

Our main contribution in this work is:

• The SimGrid event-discrete simulation results show that
the collective communication operations optimized by the
two-opt method reduced by 15% the execution time when
compared to those used in MPICH2.

The rest of this paper is organized as follows. Background
information and related work are discussed in Section II. Sec-
tion III describes the details apply two-opt method to optimize
collective communication. Section IV presents our evaluation

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 2, pages 139–142, July 2019

– 139 –



including simulation settings and experiment results. Section V
concludes with a summary of our findings in this paper.

II. EXISTING COLLECTIVE COMMUNICATIONS

A. Hardware-, path- and unicast-based Multicast Techniques

Collective communications are implemented by multicast
techniques. Hardware-, path-, and unicast-based multicast
techniques are typical methods for multicasts in interconnec-
tion networks [12]. Hardware multicasts duplicate packets at
an intermediate switch for a multicast. Since it reduces the
aggregate packet hop counts in a multicast, it efficiently sends
data to multiple destinations. A path-based multicast sends
data along a path that includes all destinations, and thus
requires an efficient multicast-path search, e.g., Hamiltonian
cycle for broadcast.

Current conventional network products, such as InfiniBand,
do not always support hardware- and path-based multicast
techniques. In this work, we assume to use unicast-based
multicasts for collective communications.

B. Optimization for Collective Communications

There are a large number of optimization methods for
collective communication. Some optimization methods of col-
lective communication were proposed by given a specific
network topology. For example, an optimal broadcasting was
proposed over hypercube network [13], and contention-free
multicast algorithms were proposed on nCUBE-2 hypercube
and 2-D mesh network [14]. The study in [12] proved that
it is impossible to avoid contention channels in arbitrary
irregular networks, and it proposed multicast algorithms to
reduce the number of channel contentions. The optimization
also had been done on supercomputer BlueGene/L with 3-
D torus topology [15]. There are also many optimization
methods of collective communication for heterogeneous HPC
platform. The study in [10], [16] proposed a topology-aware
algorithm to improve the performance of collective commu-
nication operations for large scale InfiniBand clusters. An
optimization of collective communication was proposed by
considering message length or number of nodes, in popular
MPI implementation MPICH2 [11], available algorithm will
be chosen by message length [10].

However, the existing optimization of collective commu-
nication is not optimized for random topologies in terms of
ASPLs of unicasts that form a collective communication.

III. TWO-OPT COLLECTIVE-COMMUNICATION METHOD

The 2-opt method was first proposed at 1958 to solve
traveling salesman problem [17]. We apply the two-opt method
for optimization of collective communications on random
network topologies as follows.

We use the notation x → y, x ̸= y to denote a unicast from
node x to node y. Let U = {ni → nj |ni ̸= nj , ni, nj ∈ N}
stand for the set consisting of all of the unicasts that form the
target collective communication operation.

The objective function is the total execution time of the
target collective communication operation. Another candidate

of the objective function is the total number of path hops of the
unicasts in U , however, in this study we use more “precise”
measure: the total execution time.

The following procedure attempts to minimize its value.
The method proceeds in three steps. In the first step, start
with a conventional unicast-based multicast technique that
provide U , and compute the value of the objective function
for U . In the second step, randomly pick two unicasts,
na → ni, ni → nb|na ̸= ni ̸= nb, na, nb ∈ S, from
N . Then, swap the endpoints of the two unicasts in U ,
nc → nj , nj → nd|nc ̸= nj ̸= nd, nc, nd ∈ N . Compute the
objective function for the new U . If its value becomes larger,
then cancel this swapping. Repeat the second step until the
objective function cannot be smaller in the moderate number
of attempts.

To improve the efficiency of optimization, we can select
more than two unicasts, then randomly swap the endpoints
of those unicasts simultaneously, then compare the elapsed
time of broadcast operation rather than the number of hops.
In the first step, do the broadcast operation and then we can
get the elapsed time. In the second step, select more than
two unicasts, randomly swap the endpoints of those unicasts
simultaneously, do broadcast operation and record the elapsed
time, if the elapsed time becomes lager, then cancel those
swapping. Repeat the second step until the elapsed time cannot
be smaller.

Figure 1 shows the example of the behavior of the two-
opt method on broadcast operation. We randomly pick up 2
nodes ni and nj , then inverse the index of nodes between node
ni and nj , according to the binomial algorithm of MPICH2,
this operation swap several endpoints of unicasts, so it can
improve the speed to reduce U . Then do broadcast operation,
if the elapsed time becomes smaller, it shows 2-opt method
reduce U . Repeat the last step 1000 times until the elapsed
time can not be smaller.

IV. PERFORMANCE EVALUATIONS

In this section we use discrete-event simulation to evaluate
the performance of test MPI programs using the collective
communication.

A. Methodology

We use the SimGrid simulation framework (v3.12) [18].
SimGrid implements validated simulation models, is scalable,
and makes it possible to simulate the execution of unmodified
parallel applications that use the Message Passing Interface
(MPI) [19].

We use a shortest-path routing, i.e. Dijkstra’s algorithm.
Each switch has a 100 nsec delay. Switches and hosts are
interconnected together via links with 100 Gbps bandwidth.
Each host has 100 GFlops. We configure simgrid to utilize
its built-in version of the MPICH2 implementation of MPI
collective communications [11].

In the evaluation, we attempt to swap endpoints of uni-
cast 1,000 times in the two-opt collective communication.

– 140 –



Figure 1. 2-opt method on binomial tree algorithm of Broadcast

0

0.002

0.004

0.006

0.008

0.01

0.012

64 128 256 512

e
la

p
se

d
 �

m
e

Number of switches

MPI_Bcast

MPICH2

2-opt method

Figure 2. MPI Bcast (message size = 64KB).

We apply the two-opt collective communication to broadcast
operation, and we measure their execution time.

We simulate the programs that simply replace each MPI
function 100 times, and we assume the flat MPI model.
To implement the two-opt, we replace an MPI collective-
communication functions with a number of MPI unicasts in
the program considered in the evaluation.

B. Results

1) Network Size: The Figure 2 shows the elapsed time of
broadcast operation for the MPICH2 and 2-opt method on
random network. The y-axis represents the elapsed time and
x-axis represents the network size. The network size is the
number of switches, each switch has 1 host, and each host has
1 cores, the degree of network size is 8. We set the network
size as 64, 128, 256, 512 separately and always set the message

0

0.01

0.02

0.03

0.04

0.05

0.06

64KB 128KB 256KB 512KB 1MB

el
ap

se
d

 �

m
e

Message Length

MPI_Bcast

MPICH2

2-opt method

Figure 3. MPI Bcast (64 switches).

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 4 8

el
ap

se
d

 �

m
e

Number of computer nodes per switch

MPI_Bcast

MPICH2

2-opt method

Figure 4. MPI Bcast (64 switches, 8 degree, 4 cores).

length as 64KB. As Figure 2 shows, the elapsed time of
broadcast which applied 2-opt method has better performance
than MPICH2. When network size is 64, the performance
has been improved about 5%, but when networks is 512, the
performance has been improved about 20%.

2) Message Length: The Figure 3 shows the elapsed time
of broadcast operation for the MPICH2 and 2-opt method on
random network. The y-axis represents the elapsed time and
x-axis represents the message length. We set the network size
is 64, each switch has 4 host, and each host has 4 cores, the
degree of network size is 8. We set the message length as
64KB, 128KB, 256KB, 512KB and 1MB. As Figure 3 shows,
the elapsed time of broadcast which applied 2-opt method
also has better performance than MPICH2. Performance has
increased by an average of 4%.

3) Number of Compute Nodes per Switch and Cores per
Node: The Figure 4 shows the elapsed time of broadcast
operation for the MPICH2 and 2-opt method on random
network. The y-axis represents the elapsed time and x-axis
represents the number of compute nodes per switch. We set
the network size is 64 and each host has 4 cores, the degree of
network size is 8. We set the compute nodes per switch as 1,
2, 4 and 8. As Figure 4 shows, when the number of computer
nodes per switch is 1, the performance has been improved
about 40%, but when number of computer nodes per switch
is 8, the performance has been improved about 2%.

The Figure 5 shows the relationship between cores per node
and the elapsed time of broadcast. The y-axis represents the

– 141 –



0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 2 4 8 16

el
ap

se
d

 �

m
e

cores per node

MPI_Bcast

MPICH 2

2-opt method

Figure 5. MPI Bcast (64 switches, 8 degree, 4 nodes).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 6 8 12 16

el
ap

se
d

 �

m
e

Degree of network

MPI_Bcast

MPICH2

2-opt method

Figure 6. MPI Bcast (64 switches, 4 nodes, 4 cores).

elapsed time and x-axis represents the number of cores per
node. We set the network size is 64, each switch has 4 host,
the degree of network size is 8. We set the number of cores as
1, 2, 4, 8, 16. As Figure 5 shows, when the number of cores per
node increased, the elapsed time becomes lager, but broadcast
applied 2-opt method has huge performance improvement.

4) Switch Degree: The Figure 6 shows the relationship
between the degree of network and the elapsed time. The
y-axis represents the elapsed time and x-axis represents the
degree. We set the network size is 64, each switch has 4
host, and each host has 4 cores, the message length is 64KB.
We set the number of degree as 4, 6, 8, 12, 16. As Figure 6
shows, when the degree increased, the elapsed time becomes
smaller, and the broadcast applied 2-opt method always has
better performance.

V. CONCLUSIONS

In this paper we evaluated the performance of broadcast op-
eration of MPICH2 and the broadcast operation which applied
2-opt method. The results shows that the 2-opt method can
dramatically improve the performance of broadcast operation.

ACKNOWLEDGMENTS

This work was supported by KAKENHI 19H01106.

REFERENCES

[1] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, Oct 1985.

[2] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas, “Blue gene/l torus interconnection network,”
IBM Journal of Research and Development, vol. 49, no. 2.3, pp. 265–
276, March 2005.

[3] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology,” in ISCA, 2008, pp. 77–88.

[4] GraphGolf: The Order/degree Problem Competition., “GraphGolf: The
Order/degree Problem Competition.” http://research.nii.ac.jp/graphgolf/.

[5] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova,
“A case for random shortcut topologies for hpc interconnects,” in ACM
Sigarch Computer Architecture News, vol. 40, no. 3. IEEE Computer
Society, 2012, pp. 177–188.

[6] R. Kawano, H. Nakahara, I. Fujiwara, H. Matsutani, M. Koibuchi, and
H. Amano, “Loren: A scalable routing method for layout-conscious ran-
dom topologies,” in 2016 Fourth International Symposium on Computing
and Networking (CANDAR), Nov 2016, pp. 9–18.

[7] Nas Parallel Benchmarks, https://www.nas.nasa.gov/publications/npb.
html.

[8] MPI Forum, http://mpi-forum.org/.
[9] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective

communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[10] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, “Designing
topology-aware collective communication algorithms for large scale
infiniband clusters: Case studies with scatter and gather,” in Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on. IEEE, 2010, pp. 1–8.

[11] MPICH — High-Performance Portable MPI, https://www.mpich.org/,.
[12] R. Kesavan and D. K. Panda, “Efficient multicast on irregular switch-

based cut-through networks with up-down routing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 12, no. 8, pp. 808–828, Aug
2001.

[13] S. L. Johnsson and C. . Ho, “Optimum broadcasting and personal-
ized communication in hypercubes,” IEEE Transactions on Computers,
vol. 38, no. 9, pp. 1249–1268, Sep. 1989.

[14] P. K. McKinley, H. Xu, A. . Esfahanian, and L. M. Ni, “Unicast-
based multicast communication in wormhole-routed networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 5, no. 12, pp.
1252–1265, Dec 1994.

[15] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, “Mpi col-
lective communications on the blue gene/p supercomputer: Algorithms
and optimizations,” in 2009 17th IEEE Symposium on High Performance
Interconnects, Aug 2009, pp. 63–72.

[16] H. Subramoni, K. Kandalla, J. Vienne, S. Sur, B. Barth, K. Tomko,
R. Mclay, K. Schulz, and D. K. Panda, “Design and evaluation of
network topology-/speed- aware broadcast algorithms for infiniband
clusters,” in 2011 IEEE International Conference on Cluster Computing,
Sep. 2011, pp. 317–325.

[17] G. A. Croes, “A method for solving traveling-salesman problems,”
Operations Research, vol. 6, no. 6, pp. 791–812, 1958. [Online].
Available: https://doi.org/10.1287/opre.6.6.791

[18] SimGrid: Versatile Simulation of Distributed Systems, http://simgrid.
gforge.inria.fr/.

[19] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Appl ications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

– 142 –


