
OFF2F Program Execution Using Pseudo
Non-Volatile Memory
Sho Takasugi, Masaya Sato, Hideo Taniguchi

Graduate School of Natural Science and Technology
Okayama University

Okayama, Japan
Email: takasugi@swlab.cs.okayama-u.ac.jp, {sato, tani}@cs.okayama-u.ac.jp

Abstract—The speed at which non-volatile memory can be
accessed has become faster. To exploit the features of non-volatile
memory, an executable file format, OFF2F: Object File Format
consisting of 2 Files, was proposed for speeding up program
execution. OFF2F focuses on the access modes when the program
is executed in the memory. OFF2F is designed based on the
assumption that the memory of a computer comprises of both
volatile and non-volatile memory. However, current computers do
not have a mix of volatile and non-volatile memory. Therefore, in
this study, we propose a method to simulate non-volatile memory
using volatile memory to construct a volatile and pseudo non-
volatile mixed-memory environment. We also present a method to
execute OFF2F programs using the pseudo non-volatile memory.
The performance in terms of the speed of program execution
of the OFF2F program using a pseudo non-volatile memory is
compared with a conventional executable file format. The results
show that OFF2F requires lesser number of reads from external
storage device and shorter page fault processing time.

Index Terms—non-volatile memory, executable file format,
virtual memory system, operating system

I. INTRODUCTION

Conventionally, the main memory of a computer is volatile,
which means that data is lost at shutdown. On the other
hand, non-volatile memory that can store data even after
shutdown has also been developed. Qingsong et al. proposed
a method called file system metadata accelerator (FSMAC) to
hold metadata in non-volatile memory [1]. Automated tiered
storage with fast memory and slow flash storage (ATSMF)
has also been proposed for leveraging non-volatile memory to
reduce its response time [2]. Shengan et al. proposed a tiered
file system Ziggurat that is consisted of non-volatile memory
and slow disks [3]. Jian et al. proposed Orion, a distributed
file system using the features of byte unit accessible [4].
In addition, a study was conducted to improve the average
latency of memory access by treating non-volatile memory
as a cache hierarchy [5]. Zhang et al. proposed a method
to optimize the consistency of data in CPU cache and non-
volatile memory [6]. Eisenman et al. proposed reducing the
capacity of volatile memory by using non-volatile memory for
the database [7]. Furthermore, Xue et al. proposed extension
of programming language using non-volatile memory [8].
Koshiba et al. proposed an emulator considering the access
speed of non-volatile memory [9].

With future technological innovations, non-volatile memory
is expected to have read speeds comparable to volatile mem-

ory; however, it is difficult for write speeds of non-volatile
memory to be equal to those of volatile memory. Furthermore,
non-volatile memory has a small capacity and is expensive
compared to volatile memory. Therefore, the focus is not on
the configuration in which main memory is totally equipped
with non-volatile memory but on the processor environment
of main memory configuration where volatile and non-volatile
memories are mixed. An executable file format, OFF2F:
Object File Format consisting of 2 Files, was proposed for two
types of mixed memory environments [10]. In this format, the
executable file is composed of two files to enable the virtual
memory system to support program execution utilizing the
features of both volatile and non-volatile memories. Here, the
program text and the other regions are composed as separated
files. Non-volatile memory has low read latency but high write
latency. By using this feature, the program text region, which is
read-only in OFF2F, is stored in the non-volatile memory and
mapped to the virtual memory. Therefore, the time required for
page fault processing can be shortened. There are about 100
executable programs whose size of data region size is 10%
more of the file size in /bin and /usr/bin of FreeBSD 11.0-
RELEASE. Therefore, the size of the equipped non-volatile
memory can be reduced if the program text region is stored
in the non-volatile memory.

However, the development of computers with a mixed-
memory environment is limited and verification of the effects
of OFF2F is extremely difficult.

To address this problem, we propose a method to im-
plement a pseudo non-volatile memory using conventional
computers, consisting only of volatile memory, as a supportive
environment to verify the effect of OFF2F. Furthermore, we
present an execution method of the OFF2F program using
the pseudo non-volatile memory by modifying the program
execution process in FreeBSD. We report the evaluation result
of the execution performance of the OFF2F program using a
pseudo non-volatile memory. We also report the effectiveness
of OFF2F compared to the conventional executable file format.

II. OFF2F

Conventional executable program files consist of the 4
regions (header region, program text region, program data
region, relocation information region). In typical conventional

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 12–18, January 2020

– 12 –



��������	
������

�����

������������	�����������

���������	����

�������

��������	�������

���

��������	������

 ������	����	������

����	������

!����	������

 ������	���	������

"���������	

�����������	������

����

#$%

����

&'(

�������

�������	������	
����

!����	������

 ������	���	������

"���������	

�����������	������

 ������	����	������

!����	������

 ������	���	������

Fig. 1. Mapping in OFF2F program execution.

executable file formats such as Executable and Linkable For-
mat (ELF), the above-listed information is stored in one file.
By contrast, in OFF2F, the region which is frequently read
on program execution are stored in another file. Non-volatile
memory has low read latency, but it’s write latency is high.
Furthermore, non-volatile memory has a small capacity and is
expensive compared to volatile memory. Therefore, in OFF2F,
the size of the non-volatile memory used can be reduced
because the text program region is stored in the non-volatile
memory.

Figure 1 shows mapping when the OFF2F program is
executed in the virtual memory system. Therefore, the text
program region which is stored in the non-volatile memory
is mapped it to the virtual memory space when the OFF2F
program is executed. Thus, speeding up program execution is
realized by reducing the number of reads from the external
storage.

III. PSEUDO NON-VOLATILE MEMORY CONSTRUCTION

A. Purpose

The development of computers with a mixed-memory en-
vironment is limited. Therefore, we realize the pseudo non-
volatile memory. Linux kernel has a function that emulate
non-volatile area on DRAM. However, the program execution
process flow needs to be modified in order to execute the
OFF2F program. When modifying the program execution
process flow, we thought that the cost of modifying the kernel
was low because FreeBSD has simpler process flow than
Linux. Therefore, in this section, we describe the method
of the pseudo non-volatile memory construction on FreeBSD
11.0-RELEASE.

B. Requirements

The requirements to consist pseudo non-volatile memory
with volatile memory are as follows.

Requirement 1: To make the pseudo non-volatile memory
accessible in byte units

Like non-volatile memory, pseudo non-volatile memory should
be accessible in byte units.
Requirement 2: To reproduce the characteristic of data-

existence in pseudo non-volatile memory even
after shutdown

Non-volatile memory has the characteristic that the data in the
memory is not lost at shutdown. It is necessary to reproduce
the characteristic with pseudo non-volatile memory.
Requirement 3: To make the text region file to be stored in

the pseudo non-volatile memory
In OFF2F, program text region resides in non-volatile memory.
Furthermore, during page fault processing for the program text
region when the OFF2F program is executed, the page on the
non-volatile memory is mapped to the virtual memory space.
Therefore, it is necessary to be able to store OFF2F’s program
text region in the pseudo non-volatile memory and map to the
virtual memory space.

C. Basic Design

1) Reserving pseudo non-volatile memory area using
volatile memory: We reserved a part of volatile memory as
pseudo non-volatile memory. This satisfies Requirement 1
because volatile memory is accessible in byte units. Figure 2
shows the memory configuration when the pseudo non-volatile
memory is realized. The size of the main memory used by
the kernel can be set by the boot parameters of the kernel.
Therefore, a part of the main memory is not used by the kernel
(OS unmanaged area); this can be treated as a reserved area
for the pseudo non-volatile memory.

2) Avoiding using specific memory area that is overwritten
in the initialization stage: Data in the reserved area is in
the OS unmanaged area; therefore, it will not be lost while
power is supplied. The characteristic of data existence even
at shutdown can be simulated by software reset. Therefore,

– 13 –



���������	��
��

�� ��������	��
��

����	���������������

����
��

������������������

�����
��
���

�������������
�

Fig. 2. Main memory configuration when realizing pseudo non-volatile
memory.

the non-volatile memory is reproduced in software reset. This
satisfies Requirement 2. However, it is possible that the data
in the OS unmanaged area is initialized and overwritten at the
time of the software reset. A simple solution to this problem
is to use the memory that is not overwritten at initialization.

3) Proposing a new interface to access the OS unmanaged
area: To place files in the pseudo non-volatile memory, it is
necessary to access the memory. However, because it is in the
OS unmanaged area, it cannot be accessed using conventional
interfaces. Therefore, we propose a new function to access the
pseudo non-volatile memory. Details of this function are given
in the next section. This satisfies Requirement 3.

IV. PSEUDO NON-VOLATILE MEMORY ACCESS FUNCTION

A. Basic Function

We designed a new function that enables access to the
pseudo non-volatile memory. Specifically, we implemented a
function that enables memory to be mapped to the virtual
memory space.

B. Implementation

In a virtual memory system, main memory can be accessed
by mapping it to the virtual memory space. Furthermore,
main memory is divided into pages and managed; access is
performed in page units.

Access to non-volatile memory is also performed in the
same manner. Pseudo non-volatile memory is divided into
pages and mapped to a virtual memory space. For the imple-
mentation, we used and modified the existing process to divide
the pseudo non-volatile memory into pages. Furthermore,
we used the existing process of mapping pages of volatile
memory to the virtual memory space for the pseudo non-
volatile memory.

C. Interface and Processing Contents

Table I shows the interface of nvm mapping() system call
that provides the pseudo non-volatile memory access function.
nvm mapping() system call specifies the starting real address
of the pseudo non-volatile memory, the virtual address of the
mapping destination, and the number of pages to be added
to the kernel. Both addresses must be specified as per the
page alignment. Furthermore, the physical address on pseudo
non-volatile memory is specified based on the address of

TABLE I
SYSTEM CALL PROVIDING ACCESS TO PSEUDO NON-VOLATILE MEMORY

Synopsis nvm_mapping(paddr, vaddr, pages)
Arguments paddr：First real address of pseudo non-

volatile memory
vaddr：Virtual address of mapping destina-
tion
pages：Number of pages to add to the kernel

Return value On success：1
On error：0

Description The virtual address vaddr of the calling
process and the real address paddr of the
pseudo non-volatile memory are mapped to
pages; access from vaddr to the pseudo
non-volatile memory is enabled.

Volatile memory Virtual memory space

Pseudo non-
volatile 

memory

paddr

・
・
・

vaddr

・
・
・

Mapping

pages

Fig. 3. Space configuration by nvm mapping() system call.

the OS unmanaged area. The space configuration based on
nvm mapping() system call is shown in Figure 3, and the
processing is as follows.

1）Add the value of pages to the in-kernel variable that
counts the number of pages managed by the OS.

2）Add pages starting with the real address paddr of
the pseudo non-volatile memory to the existing page
queue in the kernel.

3）Map to the virtual address vaddr given as the added
page.

Through this, a process can access the pseudo non-volatile
memory with a specified virtual address.

D. Using Pseudo Non-volatile Memory Access Function

In OFF2F, header region, program data region, and reloa-
cation information region are stored in one file (file ABC),
and program text region is stored in another file (file XYZ).
To execute the OFF2F program in a mixed environment, file
XYZ must be stored in the pseudo non-volatile memory; file
ABC must be stored in the external storage device. Therefore,
a file system needs to be built in the non-volatile memory and
it must cooperate with the file system of the external storage
device. The overview of file system construction is shown in
Figure 4 and explained as follows.

– 14 –



���������	�	�
�

��	�������

�
��

� ��	�������

�
��

����
����

���

����

���

����
�������
���

������

�����
�
�����

 
��
�	������
�����

!����������

��"�
	������
�����

 
��
�	������
�����

���#�

����������"���

 
��
�	������
�����

$ ���������%

���������	�	�
�&

Fig. 4. Copying contents of external storage to pseudo non-volatile memory.

1）Prepare two partitions in the external storage device
and build a file system on each partition.

2）One file system stores file ABC and the other stores
file XYZ.

3）The pseudo non-volatile memory is mapped to the vir-
tual memory space using the nvm mapping() system
call. We call this virtual memory space as NVM.

4）The file system partition storing the file XYZ is treated
as a RAW device, and the data in this partition is
copied to NVM.

As described above, the file system can be constructed on
the pseudo non-volatile memory and the text region file XYZ
can be stored.

V. IMPLEMENTATION

A. Conventional Virtual Memory Space Creation

ELF is an existing executable file format. The process flow
of creating a virtual memory space when an ELF program is
executed on FreeBSD is shown in Figure 5 and explained as
follows.

1）Select the program file to be executed.
2）Allocate pages based on the size of the file. The

number of pages to be allocated depends on the size
of the file (up to 16 pages).

3）Read the contents of the file to each page allocated in
step 2).

4）To read the header region, register the first page in the
kernel space mapping table.

5）Create a new virtual memory space for the process.
6）Based on the information in the header region, create

an entry for the program text region and data region
in the virtual memory space. If a page fault occurs
during program execution, the information stored in
the entry is read from the external storage device.

In steps 2) and 3), if the size of the file is 64 KB（in the case
of 4 KB page environment） or less, the entire file is read. If
the size is larger than 64 KB, the first 64 KB is read.

�������������	
����	�����

��������������������

�����������������	��	
����
��

�����
��������������������

������������
��� �����

������������ �!
�����

������������

"����������
����	��������������
�������

�������������
���
��!
�����������������

#�$����	
��������
��������

Fig. 5. Creating a virtual memory space with ELF.

B. Virtual Memory Space Creation Processing at OFF2F
Program Execution

When the OFF2F program is executed, the format of ex-
ecutable is recognized based on the contents of the first 4
bytes of the file after reading the header region. Therefore,
we modified the header region of the OFF2F program using
the header of the ELF program as follows.

1）Change the first 2 to 4 bytes of the file from “ELF”
to “OFF”

2）Add the path of file XYZ
3）Delete offset information of the program text region
4）Change offset information of the data section

Figure 6 shows the memory map of the virtual memory
space created during program execution for ELF and OFF2F.
In an ELF file, header and program text regions occupy con-
tinuous memory space. Therefore, in the memory map of the
virtual memory space, the text region is placed immediately
after the header region. On the other hand, in the OFF2F file,
header and data regions occupy continuous memory space.
Therefore, in the memory map of the virtual memory space,
the program data region is placed immediately after the header
region.

In OFF2F, the file containing the program data region exists
in the external storage device, and the file containing the
program text region exists in the pseudo non-volatile memory.
The flow of the creation process of the virtual memory space
at the time of OFF2F program execution is shown in Figure 7;
its comparison with ELF is explained below.

In many programs, the program data region is smaller than
the program text region. For example, in [10], it is shown that

– 15 –



������ ��������

�	
�������
��

��
��

��������������

��������������

��������������

��������������

��������������

��������������

��������������

�����
�������������

�����
��
�
�������

�	
�������
��

��
��

�����
�������������

�����
��
�
�������

��
���������

��
���������

��������������

��������������

��������������

��������������

��������������

��������������

��������������

Fig. 6. Memory map of the virtual memory space during program execution.

�������������	
����	�����

��������������������

��������������������

�����
������������
��������

�������������������
��� �����

�������������� 
�����

������������

!����������
����	��������������
�������

�������������
���
�� 
�����������������

"�#����	
��������
��������

�$��������	
����%������������

�������������
��

Fig. 7. Creating a virtual memory space with OFF2F.

the total size of the text region of all programs is about 20
times greater than that of the data region in the files under
FreeBSD /bin. Therefore, in step 2) in Figure 5, 16 pages are
allocated to read the first 64 KB of the file, including header
and program text regions, in ELF. Thus, when the OFF2F
program is executed, we decided to allocate only one page
from the beginning.

Therefore, step 2) was changed as follows.
2’）Allocate one page.

Because OFF2F program consists of two files, it is necessary
to add a step to select the text region file XYZ between step
5) and step 6), which is as follows.

���

�����	�
����������������

��������	��������
��	��	���

������ 	�����
�����	�
�	���

����
��	��	���

������ 	����

�������	���
���

�����	�
����

�	�
����������

������	������
�

���������	���
���	�����������

��������	��������
��

 !

Fig. 8. Page fault handling.

A）Select file XYZ to use as the program text region.
The virtual memory space can be created at the time of OFF2F
program execution only by making the above change. Note
that the entry of the text region of ELF holds the information
in the file; however, that of OFF2F holds the information of
the file XYZ.

C. Processing Page Faults

The flow of page fault processing using pseudo non-
volatile memory is shown in Figure 8. The bold lines indicate
newly implemented processes for handling OFF2F program
execution. By using the virtual address where the page fault
occurred, it can be determined if a page fault is for the contents
in the pseudo non-volatile memory. If the page fault is for
the contents in the pseudo non-volatile memory, the pseudo
non-volatile memory is searched and the corresponding real
addresses are mapped to the virtual memory space based on
the information of the entry. If it is not a page fault for the
contents in the pseudo non-volatile memory, the existing ODP
(on-demand paging) processing is performed.

VI. EVALUATION

A. Purpose and Setup

To evaluate the effectiveness of OFF2F, we compared the
time of program execution for ELF and OFF2F programs.
Note that the text region of the program used for evaluation
is entirely accessed during evaluation. Figure 9 shows page
access when the evaluation program is executed. Because
the entire text region is filled with NOP instructions, the
processing is simplified and the overhead due to reading from
external storage and page fault processing is reduced. In this
section, we measure the time from the start of execution of
the programs to the end using the pseudo non-volatile memory.
With future technological innovations, non-volatile memory is

– 16 –



���

���

�

�

�

���

���

�

�

�

��������		�

���������������������������������

Fig. 9. Memory access pattern of the evaluation program.

TABLE II
THE NUMBER OF NOP INSTRUCTIONS CALLED FOR EACH PROGRAM.

Size of program
text region

The number of
NOP instructions

32KB 30,633
64KB 63,401
96KB 96,169

128KB 128,937

expected to have read speeds comparable to volatile memory.
The pseudo non-volatile memory and the volatile memory
have same access speed because the pseudo non-volatile
memory is consisted of the volatile memory. Therefore, the
results of this evalution expected of the same reading speed
between the non-volatile memory and the volatile memory.

On FreeBSD 11.0-RELEASE, which is the environment
used for evaluation, the first 64 KB of the executable file
is read when the program starts. Therefore, a page fault for
program text region does not occur when the size of the
program is less than 64 KB. To evaluate the effect of page
faults in program execution, we prepared programs of sizes
32 KB, 64 KB, 96 KB and 128 KB of text region using NOP
instructions. Table II shows the number of NOP instructions
called for each program. Note that the size of the data region
of all programs used for evaluation was about 400 B.

To setup the evaluation environment of OFF2F, we prelim-
inary stored the file of program text region in the pseudo
non-volatile memory and measured the execution time after
performing software reset.

B. Evaluation Environment

The evaluation was performed on a computer equipped
with Intel Core i3-6100T(3.20 GHz) and 2 GB memory. In
this evaluation, the size of the memory that can be used as
volatile memory was 1 GB, and the remaining 1 GB was
used as pseudo non-volatile memory. We used FreeBSD 11.0-
RELEASE as the OS; the size of one page was set as 4 KB.

0

10

20

30

40

32 64 96 128

Ex
ec

u
ti

o
n

 t
im

e
[m

s]

Size of program text region [KB]

ELF

OFF2F

19.0 21.1
24.9

1.59
4.31 4.50

25.2

1.86

Fig. 10. Processing time for program execution with each file format.

C. Results and Discussion

The results are shown in Figure 10. The following observa-
tions are made from Figure 10.
1) The execution time of the OFF2F program is shorter than
that of ELF for any text region size. This is because of the
time required for page fault processing. In the case of a page
fault for the program text region, ELF requires reading the file
from the external storage device while OFF2F just maps the
page of the pseudo non-volatile memory.
2) The program execution time of ELF becomes longer than
that of OFF2F as the size of the text region increases. In ELF,
the larger the program text region, the larger the size of the
program data region read from the external storage device. On
the other hand, when the OFF2F program is executed, only the
program data region is read from the external storage device;
therefore, the overhead due to increase of the program text
region becomes lesser than that of ELF.
3) The execution time for 96 KB text region is about 3 ms
higher than that for 64 KB in ELF. This seems to be due to
the overhead caused by the file becoming larger than 64 KB
and page fault occurrence.

VII. CONCLUSION

To verify the effect of executable file format OFF2F for a
computer environment in which both volatile and non-volatile
memories are used, this study presented a method to construct
pseudo non-volatile memory using an existing computer con-
sisting only volatile memory. This implementation used part of
the volatile memory as pseudo non-volatile memory. The size
of the main memory used by the kernel was limited and the
remaining memory was simulated as non-volatile memory. In
addition, the pseudo non-volatile memory can be accessed by
partitioning the area of the pseudo non-volatile memory into
page units and providing a function to map them in the virtual
memory space. Using this function, we built a file system in
the pseudo non-volatile memory and stored the text region of
the OFF2F program. Additionally, we presented a method to
execute an OFF2F program using pseudo non-volatile memory
by changing the process of creation of the virtual memory
space and page fault processing in FreeBSD.

In the evaluation, the program execution times for ELF and
OFF2F were measured for programs with various sizes of text

– 17 –



region. The effectiveness of OFF2F was shown due to low
reads required from the external storage device and the short
page fault processing times.

In our future work, we plan to evaluate the effectiveness of
apply OFF2F to various processing, and use the development
of computers with a mixed-memory environment.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number JP18K11244 and FUJITSU LABORATORIES
LTD.

REFERENCES

[1] Q. Wei, J. Chen, C. Chen, “Accelerating File System Metadata Access
with Byte-Addressable Nonvolatile Memory,” ACM Trans. Storage
(TOS), vol.11, no.3, pp.1–28, 2015

[2] K. Oe, M. Sato, and T. Nanri, “Automated tiered storage system
consisting of memory and flash storage to improve response time with
input-output (IO) concentration workloads,” 2017 5th Int. Sym. Comput.
Networking, pp.311–317, 2017.

[3] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A Tiered File
System for Non-Volatile Main Memories and Disks,” FAST’19, pp.207–
219, 2019.

[4] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A Distributed File
System for Non-Volatile Main Memory and RDMA-Capable Networks,”
FAST’19, pp.221–234, 2019.

[5] D. H. Yoon, T. Gonzalez, P. Ranganathan, and R. S. Schreiber, “Explor-
ing latency-power tradeoffs in deep nonvolatile memory hierarchies,”
Proc. 9th Conf. Comput. Frontiers, pp.95–102, 2012.

[6] Y. Zhang and S, Swanson, “A Study of Application Performance with
Non-Volatile Main Memory,” Proc. 2015 31st Sym. Mass Storage Syst.
Tech. (MSST), pp.1–10, 2015.

[7] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K.
Hazelwood, C. Petersen, A. Cidon, S. Katti, “Reducing DRAM Footprint
with NVM in Facebook,” Proc. 13th EuroSys Conf. (EuroSys ’18),
no.42, pp.1–13, 2018.

[8] X. Guo, A. Shrivastava, M. Spear, and G. Tan, “Languages Must Expose
Memory Heterogeneity,” Proc. 2nd Int. Sym. Memory Syst., pp.251–256,
2016.

[9] A.Koshiba, T.Hirofuchi, S.Akiyama, R.Takano, and M.Namiki, “To-
wards Write-back Aware Software Emulator for Non-Volatile Memory,”
2017 IEEE 6th Non-Volatile Memory Systems and Applications Sym-
posium (NVMSA), pp.1–6, Aug. 2017

[10] M. Sato and H. Taniguchi, “OFF2F: A New Object File Format for
Virtual Memory Systems to Support Volatile/Non-Volatile Memory-
Mixed Environment,” Int. J. Mach. Learning Comput., vol.9, no.4,
pp.387–392, 2019.

– 18 –


