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Abstract—A multi-objective optimization problem involves a
number of objective functions to be maximized or minimized,
and no single solution exists for the problem because there
is no solution that simultaneously satisfies all of the objective
functions. Therefore, a set of Pareto-optimal solutions, which
are non-dominated solutions for the problem, is defined for the
multi-objective optimization problem.

In the present paper, we propose an optimization algorithm
based on flower pollination algorithm (FPA) for the multi-
objective knapsack problem. The experimental results show that
the proposed algorithm obtains a better set of Pareto solutions
than the existing algorithm.

Index Terms—multi-objective optimization problem, multi-
objective knapsack problem, flower pollination algorithm

I. INTRODUCTION

For a multi-objective optimization problem that involves a
number of objective functions to be maximized or minimized,
there is no single solution because no solution satisfies all
of objectives simultaneously. Since there exists a trade-off
between two or more conflicting objective functions, the non-
dominated solutions, which is called Pareto optimal solution
[2] are needed for the multi-objective optimization problem.
The problem for computing the maximal Pareto optimal so-
lutions for the multi-objective optimization problem is gen-
erally computationally hard, and a number of approximation
algorithms have been proposed for the problem.

As an example of the multi-objective optimization problems,
a number of approximation algorithms have proposed for a
multi-objective 0-1 knapsack problem. There exists a number
of knapsacks in the multi-objective 0-1 knapsack problem, and
values and weights of items are defined for each knapsack.
A number of algorithms have been proposed [1], [3] for the
multi-objective knapsack problem.

In the present paper, we propose an approximation algo-
rithm for the multi-objective 0-1 knapsack problem using
flower pollination algorithm (FPA) [4]. The FPA is an op-
timization method based on the process of the flower pollina-
tion.

We implement our proposed algorithm and an existing algo-
rithm [1] in experimental environment, and evaluate validity of
the proposed algorithms. The experimental results show that
our proposed algorithms obtain better sets of Pareto solutions
than the existing algorithm.

II. PRELIMINARIES

A. Multi-objective optimization problem

We assume that an instance of the problem is m-
dimensional decision vector x. The multi-objective opti-
mization problem consists of a set of n objective func-
tions {f0(x), f1(x), · · · , fn−1(x)} and a set of k constraint
functions {g0(x), g1(x), · · · , gk−1(x)}. Then, each objective
function is defined as image from x to n objective function
vector y. The definition is mathematically formulated as
follows.

max /min y = {y0, y1, ..., yn−1} = {f0 (x) , f1 (x) , ..., fn−1 (x)}
such that x = (x0, x1, ..., xm−1) ∈ X,

X = {x | ∀i ∈ {0, 1, ..., k − 1}, gi (x) ≤ 0}

In the above definition, X is called as a set of feasible
solutions for the problem.

B. Pareto-optimal solution

Since no solution satisfies all of the objective functions in
the multi-objective optimization problem, a solution that is not
inferior to the other solutions is needed for the multi-objective
problem. The solution is called Pareto optimal solution, and
we first define the dominance relationship of the solutions for
defining the Pareto-optimal solution. We assume that x1 and
x2 are two feasible solutions for the problem and all objective
functions are maximized. Then, x2 dominates x1 if and only
if the following two conditions holds.

∀i ∈ {0, 1, ..., n− 1}, fi (x1) ≤ fi (x2)

∃j ∈ {0, 1, ..., n− 1}, fj (x1) < fj (x2)

In this paper, x1 ≺ x2 denotes x2 dominates x1.
In addition, a feasible solution x is called Pareto optimal

if and only if there is no feasible solution x′ ∈ X such that
x ≺ x′. Since the Pareto-optimal solution is a solution that
cannot be improved in any of the objective function without
degrading one of the other functions, a maximal set of the
Pareto optimal solution is considered as an optimal solution
for the multi-objective optimization problem.

C. The hypervolume indicator

There are various metrics for a set of Pareto-optimal solu-
tions of the multi-objective optimization problem. In the paper,
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Fig. 1. An example of Hypervolume indicator

we evaluate a set of the Pareto-optimal solutions using hyper-
volume indicator [2]. Let vx be the volume of the hypercube
created by Pareto optimal solution x and the reference point
r. The hypervolume V for a set of Pareto optimal solutions
is defined as follows.

V =
∪
x∈X

vx

Fig. 1 shows an example of the hypervolume indica-
tor in case that the problem is bi-objective. Let X =
{x1,x2,x3,x4} be a set of Pareto optimal solutions. The
hypervolume for X is defined as an union, which is an gray-
shaded area in the figure, of four rectangular regions whose
opposite vertices are a reference point r and (f1(xi), f2(xi)).

III. THE OPTIMIZATION ALGORITHM FOR THE
MULTI-OBJECTIVE KNAPSACK PROBLEM

A. The multi-objective 0-1 knapsack problem

An input of the multi-objective 0-1 knapsack problem is
given as follows.

• n knapsacks whose capacities are c0, c1, · · · cn−1.
• m items stored in the knapsacks. pi,j and wi,j denote

value and weight of item j for knapsack i, respectively.
Let x = (x0, x1, · · · , xm−1) are m-dimensional Boolean

vector. Then, the multi-objective 0-1 knapsack problem is
formulated as follows.

max y = {f0 (x) , f1 (x) , ..., fn−1 (x)}

fi(x) =
m−1∑
j=0

pi,jxj

s.t. gi (x) =

m−1∑
j=0

wi,jxj

− ci ≤ 0

In the above expression, xj = 1 denotes that item j is stored
in the knapsacks.

B. The common procedures for optimization algorithms

We explain two common procedures used in the proposed
optimization algorithm. The first is a procedure that updates
best Pareto optimal solutions, and the second is a procedure

that repair infeasible solutions, which do not satisfy constraint
functions, to feasible solutions.

1) A procedure for updating best solutions: In the pro-
posed algorithm, Pareto optimal solutions are created at every
iteration. Then, Pareto ranking sort is used as a procedure
for obtaining a set of l best optimal solutions and a set of
Pareto optimal solutions. Let P be a temporal Pareto optimal
solutions, and F is a set of feasible solutions obtained in
the algorithm. Then, a procedure, Pareto ranking sort, is
summarized as follows.
A procedure of Pareto ranking sort:

Step 1: Set P ′ = P ∪ F and r = 1. Then, compute
Pareto rank of each solution in P ′ by repeating the
following sub-steps until P ′ = ϕ.

(1-1) Select Pareto optimal solutions in P ′, and set Pareto
ranks of the selected solutions to r.

(1-2) Remove the selected solutions from P ′, and set r =
r + 1.

Step 2: Sort all solutions in P ∪ F according to the
computed Pareto ranks. Then, select l best solutions
{t0, t1, · · · , tl−1} for the next iteration. In addition,
all solutions whose rank is 1 is selected as a set of
Pareto optimal solutions P .

2) A procedure for repairing infeasible solutions: We next
show a procedure that repair infeasible solutions, which do
not satisfy constraint functions, to feasible solutions. In the
procedure, a number of items are removed from a tentative
solution using a greedy method.

Let xi = (xi,0, xi,1, · · · , xi,m−1) be an infeasible solution
obtained the in the proposed algorithm. Then, the following
procedure is executed and the solution is repaired so that all
constraints are satisfied.
A procedure for repairing an infeasible solution:

Step 1: Sort all items in descending order according to the
following value sj (0 ≤ j ≤ m− 1).

sj =
n−1∑
i=0

pk,j
wk,j

Step 2: For each item j (0 ≤ j ≤ m−1) in solution xi, the
following sub-steps are repeated until xi is feasible.

(2-1) Select xi,j that satisfies the following condition.

sj = min{sk | xi,k = 1, 0 ≤ k ≤ m− 1}

(2-2) Set xi,j = 0.
(2-3) Select xi,j that satisfies the following condition.

sj = max{sk | xi,k = 0, 0 ≤ k ≤ m− 1}

(2-4) Set xi,j = 1 and evaluate the solution. In case that
the solution is infeasible, set xi,j = 0 again.

C. An optimization algorithm based on flower pollination

The flower pollination algorithm (FPA) [4] is an optimiza-
tion method inspired by the nature from the pollination process
of flowers. Flower pollination is a transfer of pollen from a
stamen to the stigma of a flower.
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The pollination is classified into four kinds of pollination.
Pollination that the pollen is transferred by pollinators such
as insects or animals is called biotic pollination. In this case,
animals and insects are attracted by flowers that have bright
colors and strong smell. On the one hand, biotic pollination
transfer pollen through the wind or diffusion in the water.
In addition, pollination can be classified into self-pollination
and cross-pollination. A transfer of pollen from one flower to
the same flower is called as self-pollination, and a transfer of
pollen from one flower to a different flower is called cross-
pollination.

The pollination increases the quality and strength of flowers.
To simulate the pollination process, the following four rules
are used.

• In the global pollination, biotic and cross-pollination are
considered. The pollinators move in a way which obeys
a Levy flight distribution.

• In the Local pollination, biotic and self-pollination are
considered.

• Flower constancy is considered as the reproduction prob-
ability, which is proportional to the similarity of two
flowers involved.

• A choice between global pollination or local pollination
is controlled by a switch probability p ∈ [0, 1].

We now formulate the flower pollination as an optimization
technique. In global pollination, flower pollen are carried over
a long distance by the pollinators. To simulate the above first
and third rules, the following equation is used.

xt+1
i = xt

i + γL(λ)(xt
i − b∗) (1)

where xt
i is the solution vector xi at iteration t, and b∗

is the current best solution. γ is a scaling factor to control
the step size. The parameter L(λ) control the strength of the
pollination. In [4], the parameters are suggested to set γ = 0.1
and λ = 1.5. To simulate move of pollinators over a long
distance, the Levy flight distribution, which is given below, is
used.

L(λ) ∼
λΓ(λ) sin(πλ2 )

π

1

S1+λ
(S >> S0 > 0) (2)

Γ(λ) is the standard gamma function. The step size S is
generated by using Gaussian distributions through generating
two random numbers U and V as follows.

S =
U

|V | 1
λ

, U ∼ N(0, σ2), V ∼ N(0, 1) (3)

σ2 =

[
Γ(1 + λ)

λΓ(1+λ
2 )

sin(πλ2 )

2
λ−1
2

] 1
λ

(4)

To simulate the above second rule as local pollination, the
following equation is defined.

xt+1
i = xt

i + U(xt
j − xt

k) (5)

where xt
j , x

t
k are pollen from different flowers of same plant

and U is a uniform distribution in [0, 1].

We now propose an optimization algorithm for the multi-
objective knapsack problem using FPA.

FPA for the multi-objective knapsack problem
Step 1: Create random initial l solutions as m-dimensional

Boolean vector x0
i = (x0, x1, · · · , xm−1) (0 ≤ i ≤

l − 1). Each xk of Boolean vector is 0 or 1 with
provability of 1

2 . Then, store the vector as a set of
solution X . If xj is an infeasible solution, execute
a procedure for repairing for the infeasible solution.
In addition, find a set of Pareto optimal solutions P
in the initial solutions, and choose a best solution b∗

from P .
Step 2: Repeat the following sub-steps T times. (T is a

parameter that denotes the number of generations.)
We assume that t denotes the number of executed
generations in the following.

(2-1) Generate solutions xt+1
i (0 ≤ i ≤ l − 1) as follows.

(2-1-1) Generate a random value r from a uniform distri-
bution in [0, 1]. In case that p ≤ r, execute global
pollination according to (1). Otherwise, execute local
pollination according to (5).

(2-1-2) Convert real values obtained in (2-1-1) into binary
values using the sigmoid function given below. ( r
is a random value in [0, 1].)

xsig =
1

1 + e−xi
(6)

xbin =

{
1 r ≤ xsig

0 (otherwise)
(7)

(2-1-3) In case that the obtained solution is infeasible, exe-
cute a procedure for repairing the infeasible solution.
Then, store the solution in a set of solutions F .

(2-3) Execute a procedure of Pareto ranking sort for P and
F , and obtain a set of Pareto optimal solutions P .

Step 3: Output a final P as a set of Pareto optimal solutions.

IV. EXPERIMENTAL RESULTS

Our proposed algorithm and an existing algorithm [1] are
implemented using C++, and we compare Pareto optimal solu-
tions and hypervolume indicators. Table I shows the simulation
environment.

TABLE I
SIMULATION ENVIRONMENT

CPU AMD Ryzen 7 1800X
RAM 64GB
SSD 512GB
OS CentOS 7.5

First, we describe parameters of the multi-objective 0-1
knapsack problem. The values of the variables used in the
simulation are as follows.

• The number of knapsacks n: 2
• The number of items m: 500
• A value of item pi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m): [10, 100]
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Fig. 2. Pareto optimal solutions of the algorithms

TABLE II
HYPERVOLUME INDICATORS OF THE ALGORITHMS

FPA NSGA II [1]
3.78× 108 3.74× 108

• A weight of item wi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m): [10,100]
• A capacity of a knapsack ci (1 ≤ i ≤ n): ci =

1
2

∑m
j=1 wi,j

Fig. 2 shows a part of our experimental results. Pareto
optimal solutions obtained by the proposed algorithm are
distributed in wider range than the solutions obtained by the
existing algorithm. In addition, Table II shows hypervolume
indicators of the algorithms. The hypervolumes of the pro-
posed algorithm are better than the existing algorithm.

V. CONCLUSIONS

In this paper, we proposed an approximation algorithm
for the multi-objective 0-1 knapsack problem using FPA.
As our future research, we are considering improvement of
our proposed algorithm for diversity of the Pareto optimal
solutions, and also considering reduction of the execution time
of the proposed algorithms.
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