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Abstract — We previously developed the RuCL framework 

dedicated for running GPU-oriented programs on multicore 

processors. OpenCL is one of the most popular frameworks for 

parallel computing. OpenCL is platform independent in prin-

ciple, and OpenCL programs can be executed on various 

hardware platforms. However, OpenCL programs written for 

GPUs are often poorly executed on multicore processors in 

terms of performance due to the granularity of threads. We 

port and evaluate our framework on the Raspberry Pi.  
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I. INTRODUCTION 

OpenCL[1] is one of standardized frameworks for paral-

lel programming. OpenCL has become very popular due to 

its openness of standardization and independence of hard-

ware platform, and there exists a huge amount of OpenCL 

software resources can be executed on various hardware 

platforms such as GPUs, multicore processors, and FPGAs. 

Although OpenCL programs can easily be ported from one 

platform to another, it does not mean that OpenCL programs’ 

performances can be ported. Specifically, many OpenCL 

programs written for GPUs are poorly executed on general-

purpose multicore processors in terms of execution speed. 

This is mainly because of the difference in parallelism gran-

ularity between GPUs and multicore processors. There is an 

increasing demand on reusing OpenCL programs between 

different platforms, and this paper addresses how to effi-

ciently execute the GPU-oriented OpenCL programs on 

multicore processors of the Raspberry Pi 3 B+[2]. 

There exist various research efforts in the past on porting 

OpenCL programs onto multicore processors. In [3], Dong 

et al. tried to define a uniform programming style to write 

OpenCL programs which efficiently run on various hard-

ware platforms. In [4], Shen et al. studied how to port GPU-

oriented OpenCL programs onto multicore processors. One 

of their conclusions is that programmers have to systemati-

cally find the optimal parallelism granularity (size of 

threads), and they left the problem as one of future research 

directions. In [5], Seo et al. presented OpenCL work-size 

selection algorithm based on a polyhedral model. In [6], 

Miyazaki et al. implemented and compared three methods 

for executing OpenCL threads on multicore processors. 

Performance analysis is important for finding bottle-

necks of systems. A lot of tools for performance analysis are 

developed and published. Linux’s perf is popular one of 

such tools. Linux’s perf is a tool suite. Kinds of events on 

kernel lands and user lands which made by a Linux system 

and a program in the system are able to be observed. System 

developers can observe a lot of events even the values from 

CPU’s performance monitoring counter (PMC). Events 

which is gained from Linux’s kernel counter are called 

software events (e.g. number of page faults). Events which 

is gained from CPU’s PMC are called hardware events (e.g. 

number of executed instructions) 

This paper evaluates the RuCL framework on the Rasp-

berry Pi 3 B+ which is a single board computer for educa-

tion. This work is based on RuCL framework proposed in 

[6]. RuCL framework is an OpenCL framework which is 

developed for running efficiently GPU-oriented OpenCL 

programs on embedded multicore processors. In [6], a per-

formance evaluation is conducted on a workstation which is 

implemented by manycore processors for servers and sever-

al dozen GBs main memory. The experimental environment 

is not appropriate for evaluating the OpenCL framework for 

embedded multicore processors. In this paper, we evaluate 

our framework on the Raspberry Pi 3 B+ which is imple-

mented by embedded multicore processors. The Raspberry 

Pi 3 B+ has quadcore processors and 1 GB main memory. 

Basically, the Raspberry Pi is computer for education but is 

used as an embedded computer for a lot of embedded sys-

tems because of its high usability and functionality. Hence, 

the Raspberry Pi is appropriate for evaluating our OpenCL 

framework for multicore processors. We analyses our 

framework in detail by Linux’s perf. In [6], thread execution 

methods are proposed and evaluated. Evaluation results in 

[6] shows the performance differences between proposed 

methods but there are few explanations with guesses. In this 

paper, we collect data of software events and hardware 

events by using Linux’s perf and compare the performance 

indexes between thread execution methods.  

This paper is organized as follows. Section II presents a 

brief introduction to OpenCL and RuCL framework. Section  

III shows experiments on the Raspberry Pi. Finally, Section 

IV concludes this paper. 

II. OVERVIEW OF RUCL FRAMEWORK 

This section presents some fundamentals on OpenCL, 

followed by an overview of our RuCL framework [6]. 
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A. OpenCL Fundamentals 

OpenCL supports both data-parallel execution and task-

parallel execution, and this paper focuses on data-parallel 

execution only. Figure 1 shows an abstract programming 

model for data-parallel execution with OpenCL. In the fig-

ure, the computer hardware consists of a host processor and 

a device 1. A device consists of a set of compute units (CUs), 

and a CU in turn consists of a set of processing elements 

(PEs). Program code executed on the device is called a ker-

nel. Kernels are dispatched from the host to the device 

through a command queue. In case of data-parallel execu-

tion, the same kernel is executed on multiple CUs in the 

device. Data is partitioned into a set of work-groups, and 

they are assigned to CUs. A work-group consists of a set of 

work-items, each of which is executed on a PE in the CU. In 

essence, a work-item corresponds to a thread. Barrier syn-

chronization is only possible among work-items in the same 

work-group. 

B. Overview of RuCL Framework 

RuCL is an OpenCL framework dedicated for embedded 

systems with multicore processors. Especially, objects crea-

tion and work-items allocation to threads are developed for 

embedded systems. Objects such as a context and a com-

mand queue are statically created, which decrease overheads 

of objects creation. Kinds and sizes of objects are fixed at a 

compilation stage. RuCL framework has a library developed 

with POSIX threads (Pthreads). RuCL’s library create 

threads processing work-items defined on OpenCL pro-

grams by Pthreads functions. Work-items are processed in a 

data-parallel. In RuCL, a work-item is not allocated to one-

to-one correspondence with a thread. RuCL programmers 

can select a thread execution method which decides a 

runtime correspondence of work-items and threads from 

three thread execution methods at a compilation stage. 

RuCL’s thread execution method is a key idea to run GPU-

oriented OpenCL programs on embedded multicore proces-

sors with less overheads. Modern GPUs have a large num-

ber of GPU cores, e.g., thousands of cores, together with 

sophisticated mechanisms for fast thread switching. Such 

 

1 Although OpenCL supports multiple devices, this paper assumes a 

single device for simplicity. 

GPUs can execute a huge number of threads, e.g., billions of 

threads, simultaneously and efficiently. Therefore, many 

OpenCL programs written for GPUs have a huge number of 

tiny work-items. On the other hand, multicore processors 

used in general-purpose computers do not have as many 

cores as GPUs. For example, processors used for desktop 

PCs typically have 4 to 32 cores at present. Furthermore, 

thread switching on multicore processors relies on software, 

and is very slow compared with that on GPUs. Therefore, 

multicore processors can hardly handle a huge number of 

threads simultaneously. This is one of the main reasons why 

OpenCL programs written for GPUs are poorly executed on 

multicore processors. The GPU-oriented OpenCL programs 

are executable on multicore processors, but their execution 

speed is not as fast as expected in many cases. In [6], 

RuCL’s thread execution method is proposed for allocating 

millions of work-items to executable number of threads run-

ning on multicore processors. 

C. RuCL’s Thread Execution Methods 

 

Fig. 1. Data-parallel execution with OpenCL. 
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(a) All-at-a-time execution 

 

 

(b) Little-by-little execution 

 

 

(c) In-the-loop execution 

Fig. 2. Thread execution methods presented in [6] 
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In [6], the authors propose, implement and evaluate three 

methods for executing OpenCL threads on multicore pro-

cessors. The tested methods are named (a) All-at-a-Time 

method, (b) Little-by-Little method, and (c) In-the-Loop 

method. The three methods are illustrated in Figure 2, where 

N denotes the total number of threads (work-items). The 

All-at-a-Time method is the simplest, where N threads are 

created and executed simultaneously regardless of the num-

ber of physical PEs. A work-item corresponds to a thread as 

one-to-one in this method. This method works fine when N 

is small. However, the method is not executable for huge N 

on multicore processors since operating systems cannot 

handle a huge number of threads simultaneously. Against 

this problem, the Little-by-Little method and the In-the-

Loop method are proposed. In the Little-by-Little method 

and the In-the-Loop method, a work-item does not corre-

spond to a thread one-to-one. The little-by-little method 

creates and executes threads little by little, and maintains the 

maximum number of active threads to L. L is defined from 

one to the number of N which is defined in the OpenCL 

program. The Little-by-Little method creates and finishes 

threads N/L times independently. The in-the-loop method 

creates L threads at the beginning, and each thread processes 

N/L work-items iteratively in a loop. The In-the-Loop meth-

od creates and finishes threads L times independently. 

Experimental result in [6] shows the limitation of the 

All-at-a-Time method and the Little-by-Little method and 

the effectiveness of the In-the-Loop method. However, there 

is no confirmation that the same result is shown when an 

experiment is done in the other platform except the work-

station used in [6]. The workstation used in [6] has dual Xeon 

E5-2620 Processors (12  physical-cores, 24  logical-cores) and 

DDR3RAM 64GBs.  

 
(a) Execution time                                      (b) Executed instructions                                         (c) Page faults 

Fig. 3. Experimental results of Montecarlo (128 work-items) 

 

 
(a) Execution time                                      (b) Executed instructions                                         (c) Page faults 

Fig. 4. Experimental results of Black-Scholes (10,485,760 work-items) 

 

 

(a) Execution time                                      (b) Executed instructions                                         (c) Page faults 

Fig. 4. Experimental results of Linear-Search (67,108,864 work-items) 
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III. EXPERIMENTS ON RASPBERRY PI 

We evaluate the performance of our RuCL framework 

on the Raspberry Pi 3B+. Execution time and the values 

taken as software events and hardware events are used as 

performance indexes. 

A. Experimental Setup 

The experimental platform is the Raspberry Pi 3 B+ 

which has ARM Cortex-A-53 quad-core processors and 1 

GB RAM. An Operating system is Ubuntu server 18.04 LTS. 

g++ 4.8 is used as a compiler which is same one used in [6]. 

Benchmark program are Montecarlo, Black-Scholes and 

Linear-Search from BEMAP[7], the OpenCL benchmark 

programs published industrially. These three programs are 

same programs used in [6]. We measure execution times, 

the numbers of executed instructions and page faults when 

benchmark programs run in the three thread execution 

methods such as the All-at-a-Time method, the Little-by-

Little method and the In-the-Loop method. This In-the-Loop 

method is the one which is refined in [6]. The numbers of 

executed instructions and page faults are observed by stat, a 

sub-command of Linux’s perf (4.15). 

B. Experimental Results 

Figure 3 shows the results of the  Montecarlo benchmark 

program. Figure 3 (a) shows the fastest method is the In-the-

Loop method when L is 128. Executions times decrease as L 

increases in the Little-by-Little method and the In-the-Loop 

method. The execution time of the In-the-Loop method is 

shorter than the executions time of the Little-by-Little meth-

od at the same L. This trend is different from the results 

shown in [6]. Figure 3 (b) shows that the number of instruc-

tions of the In-the-Loop method is smaller than the one of 

the Little-by-Little method at a same L. Figure 3 (c) shows 

that there are no big differences of the numbers of page 

faults between the execution methods. The Montecarlo 

benchmark program processes a small number of work-

items and small data.  

Figure 4 shows the results of the Black-Scholes bench-

mark program. Figure 4 (a) shows the fastest method is the 

In-the-Loop method at L is 4. The All-at-a-Time method 

fails to run because the number of work-items is over the 

number of executable threads. Figure 4 (b) shows that there 

are different trends of the number of instructions between 

the Little-by-Little method and the -In-the-Loop method. 

The number of instructions is big from L = 8 to L = 32 by 

the Little-by-Little method. On the other hand, the number 

of instructions does not change drastically by the In-the-

Loop method. Figure 4 (c) shows that the number of page 

faults increase drastically from L = 8 by the Little-by-Little 

method. The Black-Scholes benchmark program has tens of 

millions of work items, so the Little-by-Little’s overhead of 

iterating creations and terminations of threads becomes big. 

Figure 5 shows the results of the Linear-Search bench-

mark program. . Figure 5 (a) shows the fastest method is the 

In-the-Loop method at L is 16. The All-at-a-Time method 

fails to run for the same reason of the Black-Scholes. Figure 

5 (b) and 5 (c) show that the numbers of instructions and 

page faults are the almost same outlines to the Black-

Scholes. 

As shown in above, the In-the-Loop method is effective 

on embedded multicore processors of the Raspberry Pi 3 B+. 

The Little-by-Little method does not run the benchmark 

programs which have tens of millions of work-items effec-

tively because the Raspberry Pi has not enough memory and 

sometimes page faults and executed instructions are counted 

billions of times. 

IV. CONCLUSIONS 

This paper studies how to efficiently execute GPU-

oriented OpenCL programs on multicore processors of the 

Raspberry Pi. We ported our in-house OpenCL framework 

onto the Raspberry Pi and evaluate its performance. Exper-

imental results show the effectiveness of In-the-Loop meth-

od on the Raspberry Pi. Also, appropriate degrees of paral-

lelism depend on platforms. 

At present, work-items are statically assigned to threads. 

In future, we plan to refine the assignment strategy so that 

work-items are dynamically assigned to threads for better 

load-balancing at runtime. We also evaluate our RuCL 

framework form more viewpoints. 
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