
Evaluation of the RuCL Framework on Raspberry Pi

Takafumi Miyazaki1, Hayato Hidari1, Naohisa Hojo1, Ittetsu Taniguchi2, Hiroyuki Tomiyama1
1 Ritsumeikan University 2 Osaka University

Abstract — We previously developed the RuCL framework

dedicated for running GPU-oriented programs on multicore

processors. OpenCL is one of the most popular frameworks for

parallel computing. OpenCL is platform independent in prin-

ciple, and OpenCL programs can be executed on various

hardware platforms. However, OpenCL programs written for

GPUs are often poorly executed on multicore processors in

terms of performance due to the granularity of threads. We

port and evaluate our framework on the Raspberry Pi.

Keywords — OpenCL, thread execution, data-parallel execution,

multicore processors

I. INTRODUCTION

OpenCL[1] is one of standardized frameworks for paral-

lel programming. OpenCL has become very popular due to

its openness of standardization and independence of hard-

ware platform, and there exists a huge amount of OpenCL

software resources can be executed on various hardware

platforms such as GPUs, multicore processors, and FPGAs.

Although OpenCL programs can easily be ported from one

platform to another, it does not mean that OpenCL programs’

performances can be ported. Specifically, many OpenCL

programs written for GPUs are poorly executed on general-

purpose multicore processors in terms of execution speed.

This is mainly because of the difference in parallelism gran-

ularity between GPUs and multicore processors. There is an

increasing demand on reusing OpenCL programs between

different platforms, and this paper addresses how to effi-

ciently execute the GPU-oriented OpenCL programs on

multicore processors of the Raspberry Pi 3 B+[2].

There exist various research efforts in the past on porting

OpenCL programs onto multicore processors. In [3], Dong

et al. tried to define a uniform programming style to write

OpenCL programs which efficiently run on various hard-

ware platforms. In [4], Shen et al. studied how to port GPU-

oriented OpenCL programs onto multicore processors. One

of their conclusions is that programmers have to systemati-

cally find the optimal parallelism granularity (size of

threads), and they left the problem as one of future research

directions. In [5], Seo et al. presented OpenCL work-size

selection algorithm based on a polyhedral model. In [6],

Miyazaki et al. implemented and compared three methods

for executing OpenCL threads on multicore processors.

Performance analysis is important for finding bottle-

necks of systems. A lot of tools for performance analysis are

developed and published. Linux’s perf is popular one of

such tools. Linux’s perf is a tool suite. Kinds of events on

kernel lands and user lands which made by a Linux system

and a program in the system are able to be observed. System

developers can observe a lot of events even the values from

CPU’s performance monitoring counter (PMC). Events

which is gained from Linux’s kernel counter are called

software events (e.g. number of page faults). Events which

is gained from CPU’s PMC are called hardware events (e.g.

number of executed instructions)

This paper evaluates the RuCL framework on the Rasp-

berry Pi 3 B+ which is a single board computer for educa-

tion. This work is based on RuCL framework proposed in

[6]. RuCL framework is an OpenCL framework which is

developed for running efficiently GPU-oriented OpenCL

programs on embedded multicore processors. In [6], a per-

formance evaluation is conducted on a workstation which is

implemented by manycore processors for servers and sever-

al dozen GBs main memory. The experimental environment

is not appropriate for evaluating the OpenCL framework for

embedded multicore processors. In this paper, we evaluate

our framework on the Raspberry Pi 3 B+ which is imple-

mented by embedded multicore processors. The Raspberry

Pi 3 B+ has quadcore processors and 1 GB main memory.

Basically, the Raspberry Pi is computer for education but is

used as an embedded computer for a lot of embedded sys-

tems because of its high usability and functionality. Hence,

the Raspberry Pi is appropriate for evaluating our OpenCL

framework for multicore processors. We analyses our

framework in detail by Linux’s perf. In [6], thread execution

methods are proposed and evaluated. Evaluation results in

[6] shows the performance differences between proposed

methods but there are few explanations with guesses. In this

paper, we collect data of software events and hardware

events by using Linux’s perf and compare the performance

indexes between thread execution methods.

This paper is organized as follows. Section II presents a

brief introduction to OpenCL and RuCL framework. Section

III shows experiments on the Raspberry Pi. Finally, Section

IV concludes this paper.

II. OVERVIEW OF RUCL FRAMEWORK

This section presents some fundamentals on OpenCL,

followed by an overview of our RuCL framework [6].

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 31–34, January 2020

– 31 –

A. OpenCL Fundamentals

OpenCL supports both data-parallel execution and task-

parallel execution, and this paper focuses on data-parallel

execution only. Figure 1 shows an abstract programming

model for data-parallel execution with OpenCL. In the fig-

ure, the computer hardware consists of a host processor and

a device 1. A device consists of a set of compute units (CUs),

and a CU in turn consists of a set of processing elements

(PEs). Program code executed on the device is called a ker-

nel. Kernels are dispatched from the host to the device

through a command queue. In case of data-parallel execu-

tion, the same kernel is executed on multiple CUs in the

device. Data is partitioned into a set of work-groups, and

they are assigned to CUs. A work-group consists of a set of

work-items, each of which is executed on a PE in the CU. In

essence, a work-item corresponds to a thread. Barrier syn-

chronization is only possible among work-items in the same

work-group.

B. Overview of RuCL Framework

RuCL is an OpenCL framework dedicated for embedded

systems with multicore processors. Especially, objects crea-

tion and work-items allocation to threads are developed for

embedded systems. Objects such as a context and a com-

mand queue are statically created, which decrease overheads

of objects creation. Kinds and sizes of objects are fixed at a

compilation stage. RuCL framework has a library developed

with POSIX threads (Pthreads). RuCL’s library create

threads processing work-items defined on OpenCL pro-

grams by Pthreads functions. Work-items are processed in a

data-parallel. In RuCL, a work-item is not allocated to one-

to-one correspondence with a thread. RuCL programmers

can select a thread execution method which decides a

runtime correspondence of work-items and threads from

three thread execution methods at a compilation stage.

RuCL’s thread execution method is a key idea to run GPU-

oriented OpenCL programs on embedded multicore proces-

sors with less overheads. Modern GPUs have a large num-

ber of GPU cores, e.g., thousands of cores, together with

sophisticated mechanisms for fast thread switching. Such

1 Although OpenCL supports multiple devices, this paper assumes a

single device for simplicity.

GPUs can execute a huge number of threads, e.g., billions of

threads, simultaneously and efficiently. Therefore, many

OpenCL programs written for GPUs have a huge number of

tiny work-items. On the other hand, multicore processors

used in general-purpose computers do not have as many

cores as GPUs. For example, processors used for desktop

PCs typically have 4 to 32 cores at present. Furthermore,

thread switching on multicore processors relies on software,

and is very slow compared with that on GPUs. Therefore,

multicore processors can hardly handle a huge number of

threads simultaneously. This is one of the main reasons why

OpenCL programs written for GPUs are poorly executed on

multicore processors. The GPU-oriented OpenCL programs

are executable on multicore processors, but their execution

speed is not as fast as expected in many cases. In [6],

RuCL’s thread execution method is proposed for allocating

millions of work-items to executable number of threads run-

ning on multicore processors.

C. RuCL’s Thread Execution Methods

Fig. 1. Data-parallel execution with OpenCL.

Host

Device

Compute Unit

Compute Unit

PE

Command Queue

K
er

n
el

 2

K
er

n
el

 1

work item #0

work item #1PE work group #0

work group #1

K
er

n
el

 0

(a) All-at-a-time execution

(b) Little-by-little execution

(c) In-the-loop execution

Fig. 2. Thread execution methods presented in [6]

Work-item 0

Work-item 1

Work-item 2

Work-item N-1
Time

Work-item 0

Work-item 1

Work-item L-1

Time

Work-item L

Work-item L+1

Work-item 2L-1

Work-item N-L

Work-item N-L+1

Work-item N-1

Time

Work-item 0 Work-item L Work-item N-L

Work-item 1 Work-item L+1 Work-item N-L+1

Work-item L-1 Work-item 2L-1 Work-item N-1

– 32 –

In [6], the authors propose, implement and evaluate three

methods for executing OpenCL threads on multicore pro-

cessors. The tested methods are named (a) All-at-a-Time

method, (b) Little-by-Little method, and (c) In-the-Loop

method. The three methods are illustrated in Figure 2, where

N denotes the total number of threads (work-items). The

All-at-a-Time method is the simplest, where N threads are

created and executed simultaneously regardless of the num-

ber of physical PEs. A work-item corresponds to a thread as

one-to-one in this method. This method works fine when N

is small. However, the method is not executable for huge N

on multicore processors since operating systems cannot

handle a huge number of threads simultaneously. Against

this problem, the Little-by-Little method and the In-the-

Loop method are proposed. In the Little-by-Little method

and the In-the-Loop method, a work-item does not corre-

spond to a thread one-to-one. The little-by-little method

creates and executes threads little by little, and maintains the

maximum number of active threads to L. L is defined from

one to the number of N which is defined in the OpenCL

program. The Little-by-Little method creates and finishes

threads N/L times independently. The in-the-loop method

creates L threads at the beginning, and each thread processes

N/L work-items iteratively in a loop. The In-the-Loop meth-

od creates and finishes threads L times independently.

Experimental result in [6] shows the limitation of the

All-at-a-Time method and the Little-by-Little method and

the effectiveness of the In-the-Loop method. However, there

is no confirmation that the same result is shown when an

experiment is done in the other platform except the work-

station used in [6]. The workstation used in [6] has dual Xeon

E5-2620 Processors (12 physical-cores, 24 logical-cores) and

DDR3RAM 64GBs.

(a) Execution time (b) Executed instructions (c) Page faults

Fig. 3. Experimental results of Montecarlo (128 work-items)

(a) Execution time (b) Executed instructions (c) Page faults

Fig. 4. Experimental results of Black-Scholes (10,485,760 work-items)

(a) Execution time (b) Executed instructions (c) Page faults

Fig. 4. Experimental results of Linear-Search (67,108,864 work-items)

0

50

100

150

200

1 2 4 8 16 32 64 128

E
xe

c
u

ti
o

n
 t

im
e
 [

s
]

Active Threads (=L)

All-at-a-Time Little-by-Little In-the-Loop

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128

#
 I

n
s
tr

u
c
ti

o
n

s
 [
1
0
^
8
]

Active Threads (=L)

All-at-a-Time Little-by-Little In-the-Loop

0

5

10

15

20

1 2 4 8 16 32 64 128

#
 P

a
g

e
 f

a
u

lt
s
 [

1
0
^
3
]

Active Threads (=L)

All-at-a-Time Little-by-Little In-the-Loop

976 751 921 3915 1824 1630 1421 1318 1297 1299 1302

0

2

4

6

8

10

12

14

1 2 4 8 16 32 63 128 256 512 1024

E
xe

c
u

ti
o

n
 t

im
e
 [

s
]

Active Threads (=L)

All-at-a-Time Little-by-Little In-the-Loop

10 10 10 10 10 10 10 10 10 10 10
0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128 256 512 1024

#
 I

n
s
tr

u
c
ti

o
n

s
 [
1
0
^
8
]

Active Threads (=L)

Little-by-Little In-the-Loop

0.10 0.11 0.11

0.10 0.12 0.15 0.11 0.11 0.12 0.11 0.13 0.13 0.14 0.13
0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1024

#
 P

a
g

e
 f

a
u

lt
s
 [

1
0
^
8
]

Active Threads (=L)

Little-by-Little In-the-Loop

6440 4853 6028 26142 17963 15308 11866 9533 9385 9374 9389

0

5

10

15

20

25

30

1 2 4 8 16 32 63 128 256 512 1024

E
xe

c
u

ti
o

n
 t

im
e
 [

s
]

Active Threads (=L)

All-at-a-Time Little-by-Little In-the-Loop

32 32 32 32 31 32 32 32 32 32 32
0

5000

10000

15000

20000

25000

1 2 4 8 16 32 64 128 256 512 1024

#
 I

n
s
tr

u
c
ti

o
n

s
 [
1
0
^
8
]

Active Threads (=L)

Little-by-Little In-the-Loop

0.13 0.13 0.13

0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14
0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256 512 1024

#
 P

a
g

e
 f

a
u

lt
s
 [

1
0
^
8
]

Aｃｔive Threads (L)

Little-by-Little In-the-Loop

– 33 –

III. EXPERIMENTS ON RASPBERRY PI

We evaluate the performance of our RuCL framework

on the Raspberry Pi 3B+. Execution time and the values

taken as software events and hardware events are used as

performance indexes.

A. Experimental Setup

The experimental platform is the Raspberry Pi 3 B+

which has ARM Cortex-A-53 quad-core processors and 1

GB RAM. An Operating system is Ubuntu server 18.04 LTS.

g++ 4.8 is used as a compiler which is same one used in [6].

Benchmark program are Montecarlo, Black-Scholes and

Linear-Search from BEMAP[7], the OpenCL benchmark

programs published industrially. These three programs are

same programs used in [6]. We measure execution times,

the numbers of executed instructions and page faults when

benchmark programs run in the three thread execution

methods such as the All-at-a-Time method, the Little-by-

Little method and the In-the-Loop method. This In-the-Loop

method is the one which is refined in [6]. The numbers of

executed instructions and page faults are observed by stat, a

sub-command of Linux’s perf (4.15).

B. Experimental Results

Figure 3 shows the results of the Montecarlo benchmark

program. Figure 3 (a) shows the fastest method is the In-the-

Loop method when L is 128. Executions times decrease as L

increases in the Little-by-Little method and the In-the-Loop

method. The execution time of the In-the-Loop method is

shorter than the executions time of the Little-by-Little meth-

od at the same L. This trend is different from the results

shown in [6]. Figure 3 (b) shows that the number of instruc-

tions of the In-the-Loop method is smaller than the one of

the Little-by-Little method at a same L. Figure 3 (c) shows

that there are no big differences of the numbers of page

faults between the execution methods. The Montecarlo

benchmark program processes a small number of work-

items and small data.

Figure 4 shows the results of the Black-Scholes bench-

mark program. Figure 4 (a) shows the fastest method is the

In-the-Loop method at L is 4. The All-at-a-Time method

fails to run because the number of work-items is over the

number of executable threads. Figure 4 (b) shows that there

are different trends of the number of instructions between

the Little-by-Little method and the -In-the-Loop method.

The number of instructions is big from L = 8 to L = 32 by

the Little-by-Little method. On the other hand, the number

of instructions does not change drastically by the In-the-

Loop method. Figure 4 (c) shows that the number of page

faults increase drastically from L = 8 by the Little-by-Little

method. The Black-Scholes benchmark program has tens of

millions of work items, so the Little-by-Little’s overhead of

iterating creations and terminations of threads becomes big.

Figure 5 shows the results of the Linear-Search bench-

mark program. . Figure 5 (a) shows the fastest method is the

In-the-Loop method at L is 16. The All-at-a-Time method

fails to run for the same reason of the Black-Scholes. Figure

5 (b) and 5 (c) show that the numbers of instructions and

page faults are the almost same outlines to the Black-

Scholes.

As shown in above, the In-the-Loop method is effective

on embedded multicore processors of the Raspberry Pi 3 B+.

The Little-by-Little method does not run the benchmark

programs which have tens of millions of work-items effec-

tively because the Raspberry Pi has not enough memory and

sometimes page faults and executed instructions are counted

billions of times.

IV. CONCLUSIONS

This paper studies how to efficiently execute GPU-

oriented OpenCL programs on multicore processors of the

Raspberry Pi. We ported our in-house OpenCL framework

onto the Raspberry Pi and evaluate its performance. Exper-

imental results show the effectiveness of In-the-Loop meth-

od on the Raspberry Pi. Also, appropriate degrees of paral-

lelism depend on platforms.

At present, work-items are statically assigned to threads.

In future, we plan to refine the assignment strategy so that

work-items are dynamically assigned to threads for better

load-balancing at runtime. We also evaluate our RuCL

framework form more viewpoints.

ACKNOWLEDMENTS

The research has been partly executed in response to
support of KIOXIA Corporation (former Toshiba Memory
Corporation).

REFERENCES

[1] The OpenCL Specification, https://www.khronos.org/opencl/.
(Accessed on October, 2019)

[2] Raspberry Pi Foundation, https://static.raspberrypi.org/files/product-
briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf. (Accessed on
October, 2019)

[3] H. Dong, D. Ghosh, F. Zafar, and S. Zhou, “Cross-patform OpenCL
code and performance portability investigated with a climate and
weather physics model,” International Conference on Parallel
Processing Workshops (ICPPW), 2012.

[4] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “An application-
centric evaluation of OpenCL on multi-core CPUs,” Parallel
Computing, vol. 39, no. 12, pp. 834-850, 2013.

[5] S. Seo, J. Lee, G. Jo, and J. Lee, “Automatic OpenCL work-group
size selection for multicore CPUs,” International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2013.

[6] T. Miyazaki, H. Hidari, N. Hojo, I. Taniguchi and H. Tomiyama,
“Revisiting thread execution methods for GPU-oriented OpenCL
programs on multicore processors,” International Workshop on
Advances in Networking and Computing (WANC) in conjunction
with International Symposium on Computing and Networking
(CANDAR), pp. 520-523, 2018.

[7] Y. Ardila, N. Kawai, T. Nakamura, and Y. Tamura, “Support tools for
porting legacy applications to multicore,” Asia and South Pacific
Design Automation Conference (ASP-DAC), 2013.

– 34 –

