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Abstract—The smart power system focuses on renewable 
energy sources, which has the potential to reduce the 
dependence of residential buildings on electricity systems. 
However, their integration into existing systems increases 
instability, supply insecurity.  Optimizing output schedules and 
regular forecasting of electricity demand can improve power 
system stability. But, constantly changing demand for electric 
power creates problems in scheduling and forecast. For this, it 
is essential to prioritize how to exploit the immediate 
deployment of operating units and storage resources online. 
These processes include optimization and forecasting processes 
that can address under the umbrella of a multi-agent learning 
process. The purpose of the proposed multi-agent algorithm in 
the centralized controller is to learn the policy of maximizing the 
performance of each agent by ordering it to perform the average 
of each step based on each agent's reward. In this way, the multi-
agent learns to solve and optimize problems. In this paper, we 
use a multi-agent DQN algorithm by introducing two global 
states, which play role to communicate among each individual 
agent to minimize the electricity peak problem and electricity 
balance between houses by optimal use of storage utilities. 
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I. INTRODUCTION  
 

The smart power system focuses on renewable energy 
sources, which has a great potential for reducing the 
dependence of a residual building on electricity systems [1]. 
We expect these to benefit planning and operation of the 
future power systems and to help customers transition from a 
passive to an active role [11].  The emerging smart power 
system uses digital technology to meet the end user's 
expected value for bilateral communication between utilities 
and affiliated consumers. Integrating sufficient amounts of 
renewable energy sources at the residential and power system 
levels reduces the environmental impact of electrical 
infrastructure [2]. However, their integration into existing 
systems increases instability, supply insecurity. Smart power 
systems enable two-way information flow, a power grid 
status, and real-time reporting of outages and effective 
interaction of renewable energy sources. These technologies 
allow monitoring of power generation, automatic control of 
the power consumption of smart devices, error detection in 

the system and so on. Integrating residential-level renewable 
power generation such as photovoltaics (PV) and power 
storage into smart grids can be useful in reducing power 
outages that empowering residential consumers during peak 
periods of the day. Therefore, the design of the dynamic 
balancing control algorithm is an important task for the smart 
grid to deliver on its promises [3].  

 
Although many researchers consider human comfort and 

satisfaction [12], many of them focus on a single-agent 
system with unparalleled demand-free electricity prices and a 
stable environment. A single-agent problem-solving strategy 
with the purpose of optimization is very popular in many real-
world problems [4]. But solving multipurpose problems 
requires sharing agent competence, which is challenging 
through a separate agent teaching process. We understand the 
need to explore enforcement education in coordination with 
multi agent [13] systems that can take part in demand 
response programs driven by demand-driven power systems. 

 
In this paper, we use the multi-agent reinforcement 

learning (MARL) technique, where each agent derives the 
optimal control policy for the residential energy storage 
module, which only possess partial knowledge of system 
modeling. More specifically, the reinforcement learning-
based storage control does not need the information of power 
conversion efficiencies of various DC/DC converters and 
DC/AC inverters but needs the information precisely estimate 
the remaining energy in the storage module. For 
reinforcement learning purposes, time sequence data are very 
important. In our work, PV generation and demand are time 
dependent data where battery state of charge (SOC) is varying 
with each action implementation. Over the years, MARL has 
attracted extensive investigations and real-world applications 
because of its distributed nature of the multi-agent solution [5], 
in which each agent can maximize its payoff by competing or 
cooperating with other agents, e.g., a deep communication for 
getting a high-quality optimal solution of the multi-agent 
system (MAS). In terms of Q- learning approach, getting a 
better result, each agent consumes a large amount of 
computation time to gain the optimal Q-value matrix, 
especially for the equilibrium computation [6].  And action 
space is also proportional with the computation time [7], i.e., 
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the higher the control accuracy, the longer computation time 
and vice versa.. 

II. SYSTEM ARCHITECTURE AND ALGORITHM 

A. system architecture 

In this paper, we consider a microgrid system with an 
external power supply which is shown in Fig.1. We consider 
microgrid as a balancing model by using a fixed time and 
fixed external power supply through grid where unbalanced 

power is settled between the user's storage supply and PV 
production.  The microgrid contains several houses which 
consider residential consumer equipped with PV power 
generation and energy storage modules which is plotted in 
Fig.1. The primary purpose of energy storage modules in this 
system is to serve critical loads during a utility outage and 
offer power to a residential consumer during the peak period 

of the day for peak saving. It connects the PV and storage 
modules to a residential DC bus via DC-DC converters. It 
connects the smart grid and the residential AC load to the AC 
bus, which is further connected to the residential DC bus via 

an AC/DC inverter and a rectifier (Fig.2). The energy storage 
controller can supply energy to the energy storage modules 
when utility-supplied electricity suffices to store and can 

convert the output of an energy storage module to AC load 
during the peak period of the day. It could operate both in 
coordination with PV energy generation. We adopt a slotted 
time model, i.e., it provides all system constraints and 
decisions for discrete-time intervals of equal and fixed length. 
We divide each day into T time slots, each with duration D. 
Hence, we use T = 48 and D = 30 minutes. All house contains 
the same capacity battery which has fixed discharge and 
charge quantity power per hour. The battery power is not used 
for sale(supply) purpose so using battery power agent can 
supply PV generation to the external grid. The multi-agent 
environment is shown in Fig.3. Each agent demand is 
𝐸"#$%&"'  and supply is 𝐸()**+,'  ,here h = [house1, house2, 
house3]. 𝐸"#$%&"'  is different at each time with each agent 
and it is scalar value is defined in equation (1). 𝐸"#$%&" is 
total supply to the grid by the agent which is in equation (3). 
𝐸()**+,'  is supply by the agent which is equal to the PV 
production of agent is defined in equation (2).  

𝐸"#$%&",.' ≥ 𝐸01,.
' + 𝐸34,.' + 𝐸()**+,,.     (1) 

𝐸()**+,,.' ≤ 𝐸34,.'        (2) 
𝐸"#$%&",. = ∑ 𝐸()**+,,.'8

'9:       (3) 
 

B. Learning algorithm 
 

DQN [9] is popular method in reinforcement learning 
and has been previously applied to multi-agent settings [8]. 
Q-learning makes use of an action-value function for policy 
π as		𝑄=(𝑠, 𝑎) = 𝔼[𝑅|𝑠. = 𝑠, 𝑎. = 𝑎]. This Q function can 
be recursively rewritten as 		𝑄=(𝑠, 𝑎) = 𝔼(G[𝑟(𝑠, 𝑎) +
𝛾(𝔼%G~=[	𝑄=(𝑠K, 𝑎K)]]. DQN learns the action-value function 
	𝑄∗ corresponding to the optimal policy by minimizing the 
loss: 
 
ℒ(𝜃) = 𝔼(,%,O,(G[(	𝑄∗	(𝑠, 𝑎|𝜃) − 𝑦)R]  (4) 
where 𝑦 = 𝑟 + 𝛾max

%G
𝑄V∗ (𝑠K, 𝑎K). 

 
       where 𝑄	W is a target Q function, whose parameters are 
periodically updated with the most recent θ, which helps 
stabilize learning. Another crucial component of stabilizing 
DQN is the use of an experience replay buffer R containing 
tuples (𝑠, 𝑎, 𝑟, 𝑠K) . Q-Learning can be directly applied to 
multi-agent settings by having each agent 𝑖  learn an 
independently optimal function 𝑄Y [10]. However, because 
agents are independently updating their policies as learning 
progresses, the environment appears non-stationary from the 
view of anyone agent, violating Markov assumptions 
required for convergence of Q-learning.  

We used the information sharing method for Agent’s 
Global objectives [10]. Each time, the computing agent 
receives the latest information from the environment after the 
last agent's policy execution. But, only individual states 
available from the environment are not sufficient to take 

Fig.3     Diagram of multi-agent environment   
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Fig.1  Sketch of overall micro-grid system 
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Fig.2   Sketch of electricity flow and agent-based battery 
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corrective action. As such, it is shared as a new state (global 
state) to inform the cooperative agent interaction with the 
environment, which is shown in Fig.4. where GLOBAL1 is 
total demand of total agent each time steps which is expressed 
in equation(5). And GLOBAL2 is external grid capacity after 
learned agent external power used, as shown in equation (6). 
 

𝐺𝐿𝑂𝐵𝐴𝐿1 =` 𝐸"#$%&",.'
&

'9:
																																													(5) 

𝐺𝐿𝑂𝐵𝐴𝐿2 = 𝐸()**+,. −` 𝐸"#$%&",.'
&

'9:
																									(6) 

 

We consider two reward functions for each agent updating 
process, the first is a local reward received by the agent's 
actions for local progress and the other is a reward for global 
balance, which considers all the agent's actions for the global 
balance process. The purpose of the learning process is to 
reduce the external grid's energy consumption which can be 
defined as follows: 

Minimize	𝐸(𝑡) =` ` 𝐸()**+,,.' − 𝐸"#$%&",.'
&

'9:
	

j

.9:
			(7) 

Constraints: 
𝐸()**+,. = 𝑠𝑢𝑝𝑝𝑙𝑦	𝑙𝑖𝑠𝑡[𝑡]																																																									(8) 

𝐸()**+,. ≤` 𝐸"#$%&",.'
&

'9:
																																																				(9) 

𝐸"#$%&". =` 𝐸()**+,,.'
&

'9:
	≥ 0																																									(10) 

 Here, E(t) is the power of external grid  and it contains grid 
supply to the house agent and power received from these 
agents.  Each house agents have balancing objectives and 
meanwhile they have to fulfill the constraints [(1), (2), (3)] at 
each time step. Supply list is the fixed supply power from 
external grid, in this work we assume that there is no supply 
in the day time and in the morning. Since there is not 
sufficient power supply,  all agent cannot take the same action 
to get powered from external grid. 
 

III. RESULT AND ANALYSIS 

In this work, we used a microgrid to consider residential 
consumers equipped with PV power generation and energy 
storage modules. Each house has its own demand profile, 
which they have to fulfill by using storage, PV production, or 
external grid supply. The external grid supply is fixed and 
each agent demand differs from a time step. So, each time 
step has a balance constraint, which is a global objective for 
the microgrid agent. 

In Fig.5, the total PV and demand as well as each house’s 
individual PV production and demand are plotted 
respectively. External power represents the power supply by 

the external power grid. We used a single PV and demand 
data profile as baseline data and the training sample were 
prepared by adding noise to the baseline data to create 
random data  at every episode of learning time. Introducing 
the diversified trained data increases the robustness and 
generalization ability during the agent learning process thus 
improve the prediction accuracy. Battery manipulation and 

scheduling are the main objective during learning, based on 
the instant information from the environment agents and 
determine the action policy which favors to balance the 
electricity demand. Each agent has the same battery capacity, 
so they can discharge and charge under the same power 

Fig.4   Multi-agent information sharing using global state 
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Fig.7. Global and individual agent rewards for all house agents 

Fig.5. PV production, demand, external supply for multi-agent 
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quantity if the agent selects the same action.  
 Using a global state and rewards, house agents can select 

the best action at each time step. We have added all the 
remaining demand as a global state and the other is the power 
balance after the previous agent utilize power an external grid. 
This globally combined information can provide the state of 
information which can not be covered by the battery 
production, demand, and battery SOC information in a MAS 
environment. We used two types of rewards in updating 

agents, which is very fruitful for the multi-purpose 
acquisition process. We invested the impact of a global 
reward and state on the learning process in Fig.6.  The 
learning process with global state and reward is colored green 
and locates at the top of the reward plot profile. From this 
learning results, we can see that collective information is not 
an dispensible factor for an effective multi-agent learning 
process. Reward profile for three individual agents in MAS 
learning environment is also plotted in Fig.7, where agents 
reward is quite similar because we terminate the learning 
process if one of the three agents selects one bad action.      

 After increasing the learning episodes, all agents can 
schedule the battery in optimal way. They can discharge the 
battery and use external power for the demand balance 
process. They properly use an external power supply at the 
early hours and manage their PV production at day time for 
demand fulfillment and sell purpose. The battery charge and 
discharge schedule is plotted in Fig.8. In Fig.8(a) we show 
that agent learnt how to discharge but failed to charge the 
battery at the final stage of learning process. In contrast, 
Fig.8(b) shows that the agent learns to charge the battery near 
the terminal period in order to fulfill the constraint requiring 
the SOC gets recovered to its initial value of 4.65KW. PV 
production is a source of electricity for a house. Managing 
PV power increases a house's income and also helps to 
decrease the electricity peak at day time. In this work, our aim 
is to increase the PV sale, which helps to decrease the peak 
power problem. After learning, house agents manages to  sell 
PV when the demand is at maximization level, which is 
plotted in Fig.10. In this plot it shows the PV used at quite 
lower portion for house demand and the middle shows the 
total electricity powered from battery and the upper parts are 
the PV power sold by each agent.  
 

IV. CONCLUSION 
In this paper, we proposed the use of multi-agent �
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Fig.9. PV used for house and sold to an external grid 

Fig.8. (a)  Battery schedule at unbalance learning (initial 
learning period); (b) Battery schedule at balanced learning 
(final learning period) 
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reinforcement learning, to minimize power consumption 
from the power grid by the optimally scheduling electricity 
storage devices in residential buildings and aggregations of 
buildings.  A multi-agent, empowered with a global state and 
reward, is able to solve various balancing tasks.  Deep Q-
learning was adopted to solve the discrete action policy 
decision problems at both the building level and the aggregate 
level. Also, the advantages of multi-agent were analyzed in 
solving complex tasks in comparison with a in a single agent 
based normal state and reward reinforcement learning 
methods. In the further investigation, we will introduce the 
price of electricity into the learning process in order to 
minimize the energy cost. The profile gained by optimal 
pricing strategy will finally incentivize customers to shift 
their consumption behavior to lower price, off-peak periods, 
which is a vital for the realization of large scale virtual power 
plant.  
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