
An asynchronous P system using branch and bound
for maximum independent set

Kotaro Umetsu Akihiro Fujiwara
Graduate School of Computer Science and Systems Engineering

Kyushu Institute of Technology
Iizuka, Fukuoka, 820-8502, Japan

Abstract—Membrane computing is a computational model
based on activity of cells. Using the membrane computing, a
number of computationally hard problems have been solved in
a polynomial number of steps using an exponential number of
membranes. However, the number of membranes denotes the
number of cells from practical point of view, and the reduction
of the number of membranes must be considered for using the
membrane computing in real world.

In this paper, we propose an asynchronous P system with
branch and bound for the maximum independent set. In addition,
we evaluate validity of the proposed P system using computa-
tional simulations. The experimental results show the validity
and efficiency of the proposed P system.

Index Terms—membrane computing, maximum independent
set, branch and bound

I. INTRODUCTION

Natural computing is one of the next-generation computing
paradigms. The membrane computing, which has been intro-
duced in [7] as a P system, is a representative computational
model in the natural computing. Definition of the P system
is based on a feature of cells, and a membrane and an object
denote a computing cell and a storage of data, respectively.
In addition, each object evolves according to evolution rules,
which is associated with the membrane.

Since the exponential number of membranes can be created
in the polynomial number of steps using a division rule, which
is one of evolution rules on the P system, the computationally
hard problem can be solved in a polynomial number of steps.
Therefore, there are a number of P systems that solve NP
problems [1]–[3], [5], [6], [8]–[14].

In addition, asynchronous parallelism, which assumes asyn-
chronous application of evolution rules, has been considered
for the P system. The asynchronous parallelism means that
all objects may react to rules with different speeds on the P
system. The asynchronous parallelism makes the P system a
more realistic computational model because livings cells work
independently according to environment.

A number of asynchronous P systems have also been
proposed for NP problems [1], [3], [12], [13]. For example, an
asynchronous P system for finding the maxmum independent
set has been proposed in [13] . The P system for a graph with
n vertices works in in O(n2 · 2n) sequential steps or O(n2)
parallel steps using O(n2) kinds of objects.

All of the above P systems solves the computationally hard
problems in the polynomial numbers of steps using expo-

nential numbers of membranes. The number of membranes
means the number of cells, and reduction of the number of
membranes must be considered in case that the P system is
implemented using living cells because cells cannot be created
exponentially.

Recently, an asynchronous P system using branch and
bound has been proposed in [4] for reducing the number of
membranes. Branch and bound is a well-known optimization
technique, and is used in the P system for omitting partial value
assignments that cannot satisfy a given Boolean formula.

In this paper, we propose an asynchronous P system for
solving the maxmum independent set problem with branch
and bound. In the proposed P system, objects, which denote
vertices, are labeled 0 or 1 one by one. In case that the object
is labelede 1, adjacency of the labeled objects is checked. If
both objects labeled 1 are adjacent, the partial assignment
of vertices is discarded as a bounding operation. Since the
number of membranes increases according to the number
of assignments of vertices, the number can be reduced by
omitting partial assignments that are not possible for the
maxmum independent set.

We also show that the proposed P system finds the maxmum
independent set with the same complexity in [13], that is, the
P system solves the maxmum independent set problem for a
graph with n vertices in O(n2 · 2n) sequential steps or O(n2)
parallel steps using O(n2) kinds of objects.

In addition, we show the validity of the proposed P system
through experimental simulations. In the simulation, various
instances are executed on the previous P system [13] and the
proposed P system. The results show validity and efficiency
of the proposed P system.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the computational model for the membrane
computing. In Section 3, we propose the P system with branch
and bound for the maxmum independent set, and experimental
results for the proposed P system are shown in Section 4.
Section 5 concludes the paper.

II. PRELIMINARIES

In the paper, we assume an asynchronous P system proposed
in [12]. We briefly explain definition of the P system in the
following.

The P system consists mainly of membranes and objects. A
membrane, which is a computing cell in the P system, may

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 10, Number 1, pages 10–16, January 2021

– 10 –

contain objects and other membranes, and each membrane is
labeled with an integer. An object, which is a memory storage
in the P system, stores data in the P system. According to
evolution rules for the objects, objects may be evolved into
another objects or pass through membranes. The objects may
also divide or dissolve a membrane in which the object is
stored. We assume that each object is a finite strings over a
given set of alphabet.

For example of the membrane and the object, the following
expression denotes a membrane structure that consists of two
membranes and three objects.

[[α]2 [β γ]3]1

In the example, the membrane labeled 1 contains two mem-
branes labeled 2 and 3, and the membrane labeled 2 and 3
contain sets of objects {α} and {β, γ}, respectively.

Computation of P systems is defined as evolution rules.
Each evolution rule is a rewriting rule for membranes and
objects. According to the applicable evolution rules, objects
and membranes are transformed in parallel in each step of
computation. The system stops computation if there is no
applicable evolution rule for objects.

A number of types of evolution rules are assumed in the
membrane computing. In this paper, we assume the following
five rules in [12].

(1) Object evolution rule:

[α]h → [β]h

An object α is transformed into another object β.
(2) Send-in communication rule:

α []h → [β]h

An object α is moved into the inner membrane
labeled by h, and transformed into another object
β.

(3) Send-out communication rule:

[α]h → []h β

An object α is sent out from the membrane labeled
by h, and transformed into another object β.

(4) Dissolution rule:

[α]h → β

The membrane that contains an object α is dissolved,
and the object α is transformed into another object
β. (Note that the outermost membrane cannot be
dissolved.)

(5) Division rule:

[α]h → [β]h[γ]h

The membrane that contains an object α is divided
into two membranes with the same label, and the
object α is transformed into another objects, β and
γ, in each of the divided membranes.

We summarize definition of the P system. The P system
consists of the following four components.

O: The set of objects used in the system.
µ: A structure of membrane.
ωi: A set of objects initially contained in the membrane

labeled i.
Ri: A set of evolution rules for a membrane labeled i.

Using the above components, the P system is defined as
follows.

Π = (O,µ, ω1, ω2, · · · , ωm.R1, R2, · · · , Rm)

We now consider complexity of the P system. We assume
that each of evolution rules can be executed in one step on
the computational model, and the complexity of the P system
is defined as the number of steps executed on the P system.

On the standard P system, all objects, for which there are
applicable evolution rules, are transformed with maximally
parallel manner. (In case that there are a number of applicable
evolution rules for an object, one of the rules is applied non-
deterministically.) Using the maximally parallel manner, we
can consider an execution on the P system easily because the
execution with the maximally parallel manner is simple. The
complexity of the P system with maximally parallel manner
is the best case complexity, and we call the number of steps
executed with maximal parallel manner as the number of
parallel steps.

In this paper, we also consider asynchronous parallelism
[12] in the P system. Under the assumption of the asyn-
chronous parallelism, any number of applicable evolution rules
are applied in parallel. In other words, all objects, for which
there are applicable evolution rules, can be transformed in
parallel, or only one of the applicable evolution rules is applied
in each step of computation. We call the number of of steps in
the latter case as the number of sequential steps. The number
of sequential steps denotes the complexity of the P system in
the worst case.

III. AN ASYNCHRONOUS P SYSTEM WITH BRANCH AND
BOUND FOR MAXIMUM INDEPENDENT SET

In this section, we explain our proposed asynchronous P
system for the maximum independent set. An input and an
output of the problem on the P system is shown, and then, an
outline and details of the P system are presented. Finally, the
complexity of the proposed P system is discussed.

A. Input and output for the maximum independent set

The maximum independent set is a well known com-
putationally hard problem. An input of the problem is an
undirected graph G = (V,E). An output of the problem is a
subset of vertices such that no pair of vertices in the subset are
adjacent. For example, we assume that a graph in Fig. 1 is an
input graph for the maximum independent set. Then, a subset,
V ′ = {v1, v4} is one of the independent sets, and in case of
the input graph, the subset is the maximum independent set.

– 11 –

𝑣3

𝑣1

𝑣4

𝑣2

Fig. 1. An example of an input undirected graph

For the proposed P system, the following set of objects, OE ,
are given as an input graph.

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

In the above set of input objects, an edge (vi, vj) is denoted
by an objects ⟨ei,j ,W ⟩. A value W is set to T if an edge
(vi, vj) is in the graph, otherwise, W is set to F .

For example, the following set of objects is given as an
input of the P system, OE , for a graph in Fig. 1.

⟨e1,1, F ⟩, ⟨e1,2, T ⟩, ⟨e1,3, T ⟩, ⟨e1,4, F ⟩,
⟨e2,1, T ⟩, ⟨e2,2, F ⟩, ⟨e2,3, T ⟩, ⟨e2,4, T ⟩,
⟨e3,1, T ⟩, ⟨e3,2, T ⟩, ⟨e3,3, F ⟩, ⟨e3,4, T ⟩,
⟨e4,1, F ⟩, ⟨e4,2, T ⟩, ⟨e4,3, T ⟩, ⟨e4,4, F ⟩

We assume that a computation on the P system starts if
the above OE is given from the outside region into the skin
membrane.

The output of the P system is the following set of objects,
OC , which denotes a subset of vertices.

OC = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}

In the object ⟨Vi, A⟩, vi. A is set to 1 If vertex vi is in the
subset, otherwise, A is set to 0.

For example, the following OC is an output of the P system,
which denotes maximum independent set for the graph in Fig.
1.

OC = {⟨V1, 1⟩, ⟨V2, 0⟩, ⟨V3, 0⟩, ⟨V4, 1⟩}

B. Branch and bound for maximum independent set

Branch and bound is a well-known computing paradigm for
the optimization problem. On the existing P system for solving
maximum independent set [13], all subset for vertices are
created for an input graph with n vertices, and 2n assignments
are checked as to whether each assignment is valid. However,
a partial assignment of vertices can be discarded if the valid
assignment of vertices is determined.

𝑣1

𝑣2

𝑣3

𝑣4

bounding→

0 1

1010

1010 10

10101010

Fig. 2. An example of branch and bound for maximum independent set

Fig. 2 shows an example of a search tree for the above
concept. Let the graph in Fig. 1 be an input graph. In the
search tree, a selected subset of vertices is denoted by a path
from a root node to a leaf node. In this case, a path starting
from v1, which is in V ′, to v2, which is also in V ′, can be
bounded because there is an edge between v1 and v2 in the
input graph.

We now explain an overview of the asynchronous P system
with branch and bound for finding the maximum independent
set. An initial membrane structure for the computation is
[[]2]1. We refer to the membrane labeled 1 as the outer
membrane and refer to the membranes labeled 2 as the inner
membranes.

The computation of the P system mainly consists of the
following six steps.

Step 1: Move modified copies of input objects into inner
membranes.

Step 2: Create subsets of vertices by dividing the inner
membranes. Then, check whether adjacent vertices
are in the selected subset with branch and bound.
If adjacent vertices are in the subset, stop for the
assignment for vertices.

Step 3: Sent out all sizes of independent subset from all
inner membranes, and compute the size of the max-
imum independent set in the outer membrane.

Step 4: By using the computed size of the maximum in-
dependent set, create subsets of vertices again by
dividing the inner membrane repeatedly. Then, check
whether adjacent vertices are in the subset with
branch and bound.

Step 5: In each divided membrane, check whether each
subset of vertices is the maximum independent set,
and dissolve all inner membranes if the membrane
contains a subset that is not the maximum indepen-
dent set.

Step 6: Dissolve one of the inner membranes that includes
the maximum independent set, and send out the result
from the outer membrane.

– 12 –

C. Details of the proposed P system

We explain details of each step of the computation for
maximum independent set. In Step 1, modified copies of the
input objects are moved into an inner membranes.

Since the P system considered in the present paper is
asynchronous, we cannot move the input objects in parallel,
and input objects are moved one by one applying the following
sets of evolution rules. (In the following description, a set of
evolution rules Ri,j indicates that the set of rules is used for
membrane i in Step j.)

(Evolution rules for the outer membrane)

R1,1 = {⟨e1,1, F ⟩[]2 → [⟨M2,1⟩⟨e1,1, F ⟩]2
∪{⟨Mi,j⟩⟨ei,j ,W ⟩[]2

→ [⟨Mi+1,j⟩⟨ei,j ,W ⟩]2 | 1 ≤ i ≤ n,

1 ≤ j ≤ n,W ∈ {F, T}}
∪{⟨Mn+1,j⟩ → ⟨M1,j+1⟩ | 1 ≤ j ≤ n,

∪{⟨M1,n+1⟩[]2 → [⟨M1,n+2⟩]2}

(Evolution rules for inner membrane 2)

R2,1 = {[⟨Mi,j⟩]2 → []2⟨Mi,j⟩
| 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

∪{[⟨M1,n+2⟩]2 → [⟨S1⟩⟨enter, 0⟩]2[⟨D⟩]2}

In the above evolution rules, object ⟨e1,1, F ⟩ starts the
computation, and input objects, ⟨ei,j ,W ⟩, are moved into the
inner membrane by object ⟨Mi,j⟩. After all input objects,
⟨ei,j ,W ⟩, are moved into the inner membrane, object ⟨Mi,j⟩ is
changed into object ⟨M1,n+2⟩. At the end of Step 1, objects
⟨D⟩, ⟨S1⟩ and ⟨enter, 0⟩ are created by division rules. The
object ⟨D⟩ is used for the computation of Step 5, and two
objects, ⟨S1⟩ and ⟨enter, 0⟩, trigger the computation of Step
2.

In Step 2, subsets of vertices are created by dividing
the inner membranes. Then, the subset is checked whether
adjacent vertices are in the subset with branch and bound. If
adjacent vertices are in the subset, the assignment is stopped
by bounding. Step 2 is executed by applying the following set
of evolution rules. In the evolution rules, ⟨vi, 1⟩ denotes that
vi is contained in the subset of vertices.

(Evolution rules for inner membrane)

R2,2 = {[⟨Si⟩⟨enter, h⟩]2
→ [⟨Si+1⟩⟨vi, 0⟩⟨enter, h⟩]2
[⟨Li,1⟩⟨vi, 1⟩⟨enter, h+ 1⟩]2}
| 1 ≤ i ≤ n, 1 ≤ h ≤ n− 1}

∪{⟨Li,j⟩⟨vj , 0⟩⟨ei,j ,W ⟩ → ⟨Li,j+1⟩⟨vj , 0⟩⟨ei,j ,W ⟩
| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1,W ∈ {F, T}}

∪{⟨Li,j⟩⟨vj , 1⟩⟨ei,j , F ⟩
→ ⟨Li,j+1⟩⟨vj , 1⟩⟨ei,j , F ⟩| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1}

∪{⟨Li,j⟩⟨vj , 1⟩⟨ei,j , T ⟩
→ ⟨Failed, n− i⟩⟨vj , 1⟩⟨ei,j , T ⟩⟨di,1, down⟩
⟨di+1,1, up⟩| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1}

∪{⟨Li,i⟩ → ⟨Si+1⟩
| 1 ≤ i ≤ n}

∪{⟨Sn+1⟩⟨enter, h⟩ → ⟨Succeed, 0, h⟩⟨dn,1, down⟩
| 0 ≤ h ≤ n}

In the above evolution rules, vertex vi is set into subset
using the first set of rules. The vertices of vi (1 ≤ i ≤ n) are
checked for vi using object ⟨Li,j⟩ if vi and vj are adjacent or
not. Then, the object ⟨enter, h⟩ denotes the number of vertices
in subset for the membrane.

On the other hand, for the case in which vi and vj are
adjacent, and the vertices are in the subset at the same
time, objects ⟨Failed, n − i⟩, ⟨di,1, down⟩ and ⟨di+1,1, up⟩,
which denote a failure of assignment, are created. The object
⟨Failed, n − i⟩ denotes that n − i vertices are remained in
the case of the failure of the assignment, and ⟨di,1, down⟩
⟨di+1,1, up⟩ are objects used in Step 3 for deleting partial
assignment in the membrane. In addition, these objects trigger
the computation of Step 3.

In Step 3, in each divided membrane, the number of vertices
is sent out to the outer membrane in the case that the
subset is an independent set. Then, the size of the maximum
independent set is computed in the outer membrane.

Step 3 is executed by applying the following set of evolution
rules.

(Evolution rules for the outer membrane)

R1,3 = {⟨Failed, k⟩⟨Failed, k⟩ → ⟨Failed, k + 1⟩
| 0 ≤ k ≤ n− 2}

∪{⟨Failed, k⟩⟨Succeed, k, h⟩
→ ⟨Succeed, k + 1, h⟩
| 0 ≤ k ≤ n− 1, 0 ≤ h ≤ n}

∪{⟨Succeed, k, a⟩⟨Succeed, k, b⟩
→ ⟨Succeed, k + 1, a⟩
| 0 ≤ k ≤ n− 1, 1 ≤ a ≤ n, 0 ≤ b ≤ a}

∪{⟨Succeed, n, h⟩ → ⟨search, h⟩
| 1 ≤ h ≤ n}

(Evolution rules for inner membrane)

R2,3 = {⟨di,j , down⟩⟨ei,j ,W ⟩ → ⟨di,j+1, down⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,W ∈ {F, T}}

∪{⟨di,n, down⟩⟨ei,n,W ⟩⟨vi, a⟩ → ⟨di−1,1, down⟩
| 1 ≤ i ≤ n,W ∈ {F, T}, a ∈ {0, 1}}

– 13 –

∪{⟨di,j , up⟩⟨ei,j ,W ⟩ → ⟨di,j+1, up⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,W ∈ {F, T}}

∪{⟨di,n, up⟩⟨ei,n,W ⟩ → ⟨di+1,1, up⟩
| 1 ≤ i ≤ n,W ∈ {F, T}}

∪{[⟨Failed, i⟩⟨d0,1, down⟩⟨dn+1,1, up⟩⟨enter, k⟩]2
→ ⟨Failed, i⟩| 0 ≤ i ≤ n− 1, 1 ≤ k ≤ n}

∪{[⟨Succeed, 0, h⟩⟨d0,1, down⟩]2 → ⟨Succeed, 0, h⟩
| 0 ≤ h ≤ n}

In Step 3, R2,3 is applied in each divided membrane.
In each divided membrane, the objects ⟨di,j , down⟩ and
⟨di,j , up⟩ erase all objects in each inner membranes ex-
cept for ⟨Succeed, 0, h⟩ and ⟨Failed, i⟩. Then, the objects,
⟨Succeed, 0, h⟩ and ⟨Failed, i⟩, are sent out to the outer
membrane by dissolving the membrane.

The object ⟨Succeed, k, h⟩ denotes that there are 2k suc-
cessful assignments of vertices with h vertices, and the object
⟨Failed, i⟩ denotes that there are 2i failure assignments of
vertices. For counting the number of vertices in the subset,
object ⟨search, h⟩ is created. The ⟨search, h⟩ denotes that
the check for the membrane is finished and the maximum size
of the subset in each membrane.

In Step 4, by using the computed size of the maximum
independent set, subsets of vertices are created again by
dividing the inner membrane repeatedly. Then, check whether
adjacent vertices are in the subset with branch and bound. Step
4 is executed by applying the following sets of evolution rules.

(Evolution rules for the outer membrane)

R1,4 = {⟨search, h⟩[]2 → [⟨search, h⟩]2 | 1 ≤ h ≤}

(Evolution rules for inner membrane)

R2,4 = {⟨search, h⟩⟨D⟩ → ⟨2S1⟩⟨search, h⟩⟨2enter, 0⟩}
| 1 ≤ h ≤ n}

∪{[⟨2Si⟩⟨2enter, h⟩]2
→ [⟨Lcheck, n− 1⟩⟨2vi, 0⟩⟨2enter, h⟩]2
[⟨2Li,1⟩⟨2vi, 1⟩⟨2enter, h+ 1⟩]2}
| 1 ≤ i ≤ n, 0 ≤ h ≤ n− 1}

∪{⟨2Li,i⟩ → ⟨2Si+1⟩}| 1 ≤ i ≤ n}
∪{⟨search, h⟩⟨2Sn+1⟩⟨2enter, h⟩
→ ⟨2Succeed, 0, h⟩⟨2d1,1, up⟩}| 0 ≤ h ≤ n}

∪{⟨2Li,j⟩⟨2vj , 0⟩⟨ei,j ,W ⟩ → ⟨2Li,j+1⟩⟨vj , 0⟩⟨ei,j ,W ⟩
| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1,W ∈ {F, T}}

∪{⟨2Li,j⟩⟨2vj , 1⟩⟨ei,j , F ⟩ → ⟨2Li,j+1⟩⟨2vj , 1⟩⟨ei,j , F ⟩
| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1}

∪{⟨2Li,j⟩⟨2vj , 1⟩⟨ei,j , T ⟩
→ ⟨2Failed, n− i⟩⟨2vj , 1⟩⟨ei,j , T ⟩

⟨2di,1, down⟩⟨2di+1,1, up⟩
| 2 ≤ i ≤ n, 1 ≤ j ≤ i− 1}

∪{⟨search, a⟩⟨2enter, h⟩⟨Lcheck, a− h− 1⟩
→ ⟨search, a⟩⟨2enter, h⟩⟨2Failed, a− h− 1⟩
⟨2dn−a+h+1,1, down⟩⟨2dn−a+h+2,1, up⟩
| 1 ≤ a ≤ n, 0 ≤ h ≤ a− 1}

∪{⟨search, a⟩⟨2enter, h⟩⟨Lcheck, k⟩
→ ⟨search, a⟩⟨2enter, h⟩⟨2Sn−k+1⟩
| 1 ≤ a ≤ n− 1, 0 ≤ h ≤ a, a− h ≤ k ≤ n− h}

In the above evolution rule for the outer membrane, object
⟨search, h⟩, which is created in Step 3, is moved into the inner
membrane. On the other hand, in the above evolution rules
for the inner membrane, objects ⟨2S1⟩ and ⟨2enter, 0⟩ are
created, and the objects triggers a division rule. In addition, if
the number of vertices is not the meximumn h of ⟨search, h⟩
using ⟨Lcheck, i⟩, which denotes the number of vertices not
yet assigned, the divided membrane is bounded. Then, an
assignment of vertices are created similar to Step 2, and objects
⟨2di,j , down⟩ and ⟨2di,j , up⟩, which triggers the computation
of Step 5, are created in each divided membrane.

In Step 5, all inner membrane are deleted except for the
membrane that contains the maximum independent set. Step
5 is executed by applying the following set of evolution rules.

(Evolution rules for the outer membrane)

R1,5 = {⟨2Failed, k⟩⟨2Failed, k⟩ → ⟨2Failed, k + 1⟩
| 0 ≤ k ≤ n− 2}

∪{⟨2Failed, k⟩⟨2Succeed, k, h⟩
→ ⟨2Succeed, k + 1, h⟩
| 0 ≤ k ≤ n− 1, 1 ≤ h ≤ n}

∪{⟨2Succeed, k, a⟩⟨2Succeed, k, b⟩
→ ⟨2Succeed, k + 1, a⟩
| 0 ≤ k ≤ n− 1, 1 ≤ a ≤ n, 0 ≤ b ≤ a}

∪{⟨2Succeed, n, h⟩ → ⟨output⟩| 1 ≤ h ≤ n}

(Evolution rules for inner membrane)

R2,5 = {⟨2di,j , down⟩⟨ei,j ,W ⟩ → ⟨2di,j+1, down⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,W ∈ {F, T}}

∪{⟨2di,n, down⟩⟨ei,n,W ⟩⟨2vi, a⟩
→ ⟨2di−1,1, down⟩
| 1 ≤ i ≤ n,W ∈ {F, T}, a ∈ {0, 1}}

∪{⟨2di,j , up⟩⟨ei,j ,W ⟩ → ⟨2di,j+1, up⟩
| 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,W ∈ {F, T}}

∪{⟨2di,n, up⟩⟨ei,n,W ⟩ → ⟨2di+1,1, up⟩
| 1 ≤ i ≤ n,W ∈ {F, T}}

∪{[⟨2Failed, i⟩⟨2d0,1, down⟩⟨2dn+1,1, up⟩⟨2enter, k⟩]2
→ ⟨2Failed, i⟩| 0 ≤ i ≤ n− 1, 0 ≤ k ≤ n}

∪{[⟨2Succeed, 0, h⟩⟨2dn+1,1, up⟩]2
→ ⟨2Succeed, 0, h⟩| 1 ≤ h ≤ n}

– 14 –

In Step 5, R2,5 is applied in each divided membrane.
In each failed membrane, the objects ⟨2di,j , down⟩ and
⟨2di,j , up⟩ delete all objects in each inner membranes except
for ⟨2Succeed, 0, h⟩ and ⟨2Failedi⟩. In other words, the
membrane that contains the maximum independent sets is not
deleted. Then, the objects, ⟨2Succeed, 0, h⟩ and ⟨2Failedi⟩,
are sent out to the outer membrane with dissolving the
membrane.

For counting the number of vertices in the subset, object
⟨2Succeed, n, h⟩ is created. The ⟨2Succeed, n, h⟩ denotes that
the check for the membrane is finished and the maximum size
of the subset is h. Then, the object ⟨output⟩, which is created
from ⟨2Succeed, n, h⟩, is sent out to outer membrane. The
⟨output⟩ triggers the computation of Step 6.

In Step 6, one of the inner membranes, which includes the
maximum independent set, is dissolved, and the result is sent
out from the outer membrane. Step 6 is executed by applying
the following set of evolution rules.

(Evolution rules for the outer membrane)

R1,6 = {⟨output⟩[]2 → ⟨output⟩
∪{⟨chain, i⟩ → ⟨chain, i+ 1⟩⟨output, i+ 1⟩

| 1 ≤ i ≤ n− 2}
∪{⟨chain, n− 1⟩ → ⟨output, n⟩
∪{[⟨output, i⟩⟨2vi, a⟩]0 → []0⟨Vi, a⟩

| 1 ≤ i ≤ n, a ∈ {0, 1}}

(Evolution rules for the inner membrane)

R2,6 = {[⟨output⟩]2 → ⟨chain, 1⟩⟨output, 1⟩

At the beginning of Step 6, object ⟨output⟩ is moved
into one of the inner membranes, which is selected non-
deterministically. Then, the membrane is dissolved by the ob-
ject, and objects ⟨chain, 1⟩ and ⟨output, 1⟩ are created in the
inner membrane. Next, a set of output objects {⟨Vi,W ⟩| W ∈
{0, 1}} is sent out from the outer membrane to the outside
region by auxiliary objects ⟨chain, i⟩ and ⟨output, i⟩.

We now summarize the asynchronous P system ΠMIS for
finding the maximum independent set as follows:

ΠMIS = (O,µ, ω1, ω2, R1, R2)

O = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {F, T}}
∪{⟨Mi,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Si⟩ | 1 ≤ i ≤ n+ 1}
∪{⟨enter, h⟩ | 1 ≤ h ≤ n}
∪{⟨vi,W ⟩ | 1 ≤ i ≤ n,W ∈ {0, 1}}
∪{⟨Failed, k⟩ | 0 ≤ k ≤ n− 1}
∪{⟨Succeed, k, h⟩ | 0 ≤ k ≤ n, 1 ≤ h ≤ n}
∪{⟨di,j , down⟩ | 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}
∪{⟨di,j , up⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

∪{⟨search, h⟩ | 1 ≤ h ≤ n}
∪{⟨D⟩}
∪{⟨2Si⟩ | 1 ≤ i ≤ n+ 1}
∪{⟨2enter, h⟩ | 1 ≤ h ≤ n}
∪{⟨2vi,W ⟩ | 1 ≤ i ≤ n,W ∈ {0, 1}}
∪{⟨2Failed, k⟩ | 0 ≤ k ≤ n− 1}
∪{⟨2Succeed, k, h⟩ | 0 ≤ k ≤ n, 1 ≤ h ≤ n}
∪{⟨2di,j , down⟩ | 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}
∪{⟨2di,j , up⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{⟨Lcheck, i⟩ | 1 ≤ i ≤ n− 1}
∪{⟨output⟩}
∪{⟨chain, i⟩ | 1 ≤ i ≤ n− 1}
∪{⟨output, i⟩ | 1 ≤ i ≤ n}
∪{⟨Vi,W ⟩ | 1 ≤ i ≤ n,W ∈ {0, 1}}

µ = [[]2]1

ω1 = ω2 = ϕ

R1 = R1,1 ∪R1,2 ∪ · · · ∪R1,6

R2 = R2,1 ∪R2,2 ∪ · · · ∪R2,6

D. Complexity of the P system

The complexity of the proposed P system ΠMIS is consid-
ered as follows. In Step 1, O(n2) objects are moved from
the outer membrane into the inner membrane sequentially.
Then, Step 1 works in O(n2) parallel or sequential steps. The
sizes of the evolution rules and objects are O(n2) and O(n2),
respectively.

In Step 2, O(2n) membranes are created, and Step 2 works
in O(n2) parallel steps and O(2n) sequential steps. The sizes
of the evolution rules and objects are O(n2) and O(n2),
respectively.

Step 3 is executed in each divided membrane. Therefore,
Step 3 works in O(n2) parallel steps and O(n2) sequential
steps. The size of the evolution rules is O(n3).

In Step 4 and Step 5, the procedure is almost the same as
that of Step 2 and Step 3. Therefore, the numbers of sequential
and parallel steps of Step 4 are O(2n) and O(n2), respectively,
and the numbers of sequential and parallel steps of Step 5 are
O(n2) and O(n2), respectively.

In the final step, the computation is executed in the outer
membrane, and Step 6 works in O(n) parallel or sequential
steps. The size of the evolution rules is O(n).

From the above discussion, the following theorem is ob-
tained for the proposed asynchronous P system ΠMIS.

Theorem 1: The asynchronous P system ΠMIS, which solves
the maximum independent set for a graph with n vertices,
works in O(2n) sequential steps or O(n2) parallel steps by
using O(n2) types of objects and evolution rules of size
O(n3). □

IV. EXPERIMENTAL SIMULATIONS

We compare the numbers of membranes used on an existing
P system [13] and the number of membranes used on the

– 15 –

0

200

400

600

800

1000

3600

4200

20% 40% 60% 80% 0~100%

n
u

m
b

e
r

o
f

m
e

m
b

ra
n

e

edge generation probability

proposed P system existing P system

Fig. 3. Experimental results

proposed P system membranes for the maximum independent
set. The simulations are executed on our custom simulator,
which is programmed in Python, for asynchronous P systems.

Since the simulator executes P systems with asynchronous
parallelism, all of the evolution rules are applied in a fully
asynchronous manner. In other words, any number of applica-
ble evolution rules is applied in each step of execution in the
simulator. Therefore, the applied evolution rules differ between
executions on the simulator, and the output of the simulation
may differ for the same input. We first implement the proposed
P system for the maximum independent set on the simulator,
and execute the proposed P systems for various inputs on the
simulator. In all of the simulations, valid results are obtained
for any input.

Next, we compare the number of membranes used on the
existing P system and the proposed P system for the maximum
independent set. For example, in case of twelve vertices, ten
random graphs are created so that each edge is connected with
probability p(p ∈ { 1

5 ,
2
5 ,

3
5 ,

4
5}), and the input graphs are given

to the existing and proposed P systems.
Fig. 3 shows an example of the results that denote average

values of the number of membranes for n = 12. Since the
simulation for the existing P system for n = 12 did not finish
in a valid execution time, the number of the membranes is cal-
culated theoretically for this case. The number of membranes
of the existing P system needs more than 4, 000 for twelve
vertices graph. In this case, the number of membranes on the
proposed P system is 3 percent of the number of membranes
on the existing P system for p = 4

5 .

V. CONCLUSIONS

In this paper, we proposed the asynchronous P system for
the maximum independent set. The P system with branch and
bound reduces the number of membranes by discarding partial
assignments of vertices in which the neighboring vertices are
in the same subset.

The proposed P system is fully asynchronous and works in
a polynomial number of steps in a maximally parallel manner,

and also works sequentially. Although asymptotic complexity
of the P system is the same as the known P system, the
proposed P system reduces the number of membranes by
discarding a partial assignment of vertices in case that the
assignment is invalid.

We showed that the proposed P system outputs valid
results and also showed that the number of membranes in
the proposed P system is effectively less than the number
of membranes in the existing P system for the maximum
independent set.

In our future research, we intend to consider a reduction
in the number of objects and the size of evolution rules
used in the proposed P system. We also intend to consider
asynchronous P systems with branch and bound for other
computationally hard problems.

VI. ACKNOWLEDGMENTS

The work was partially supported by JSPS KAKENHI,
Grant-in-Aid for Scientific Research (C), 20K11681.

REFERENCES

[1] R. Freund. Asynchronous P systems and P systems working in the
sequential mode. In International workshop on Membrane Computing,
pages 36–62, 2005.

[2] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-
Campero. A uniform solution to SAT using membrane creation.
Theoretical Computer Science, 371(1-2):54–61, 2007.

[3] J. Imatomi and A. Fujiwara. An asynchronous P system for MAX-SAT.
In 8th International Workshop on Parallel and Distributed Algorithms
and Applications, pages 572–578, 2016.

[4] Y. Jimen and A. Fujiwara. Asynchronous P systems for solving
the satisfiability problem. International Journal of Networking and
Computing, 8(2):141–152, 2018.

[5] A. Riscos-Nnez M. J. Prez-Jimnez. A linear-time solution to the
knapsack problem using P systems with active membranes. Proc.
International Workshop on Membrane Computing, pages 250–268, 2003.

[6] L. Q. Pan and A. Alhazov. Solving HPP and SAT by P systems with
active membranes and separation rules. Acta Informatica, 43(2):131–
145, 2006.

[7] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

[8] G. Păun. P systems with active membranes: Attacking NP-complete
problems. Journal of Automata, Languages and Combinatorics, 6(1):75–
90, 2001.

[9] M. J. Pérez-Jiménez and A. Riscos-Núñez. Solving the subset-sum
problem by P systems with active membranes. New Generation
Computing, 23(4):339–356, 2005.

[10] M. J. Pérez-Jiménez and F.J. Romero-Campero. Solving the BIN
PACKING problem by recognizer P systems with active membranes.
In The Second Brainstorming Week on Membrane Computing, pages
414–430, 2004.

[11] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. A
polynomial complexity class in P systems using membrane division.
Journal of Automata, Languages and Combinatorics, 11(4):423–434,
2003.

[12] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle prob-
lem using asynchronous p systems. IEICE Transactions on Information
and Systems (Special section on Foundations of Computer Science), E95-
D(3), 2012.

[13] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph
problems. International Journal of Networking and Computing, 4(1):2–
22, 2014.

[14] C. Zandron, C. Ferretti, and G. Mauri. Solving NP-complete problems
using P systems with active membranes. In Unconventional Models of
Computation, pages 289–301, 2000.

– 16 –

