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Abstract—A feasibility study of stochastic+spiking neural net-
work is presented for reducing the hardware implementation
cost. By using a set of time-based stochastic computing (TBSC)
circuits, the stochastic numbers (SNs) in continuous time-domain
are directly fed into the input layer of the spiking neural networks
(SNNs) without any additional spike-coding mechanism. The
analog circuits behaving as synapses and neurons are designed
to fit the TBSC coding and generate spikes for the rest of layers.
The transistor counting is compact as 22 per synapse and 22 per
neuron. Several real-world tasks based on pattern recognition
data-set including MNIST are verified and estimated. For proof-
of-concept, a 0.18um CMOS technology is used to design and
simulate our proposed SNN. Implementing the exampled pattern
recognition tasks, the recognition accuracy loss is below 4%
compared to well-trained artificial neural networks (ANNs). The
average firing energy is 0.94pJ per spike, which is 0.5x of state-of-
art of low power SNN implementations. The energy consumption
of MNIST is estimated as 0.88uJ per classification.

Index Terms—Spiking neural network, time-based stochastic
computing, energy efficient

I. INTRODUCTION

Artificial Neural Networks (ANNs) have archived state-of-
the-art performances in the wide field of applications such as
image recognition [1], [2], object detection [3], and speech
recognition [4]. In recent decades, the greedy demands on the
complexity and quality of service at application-end lead to the
deep and complicated NNs, which are usually implemented
by massive computations [5], [6]. Due to the large amount of
computations, one of popular fashions is to implement ANNs
(both of training and inference) by multi-core platforms such
as GPGPU. The critical parts of ANN implementations are
large multiply-accumulations (MACs). It has been found that
general purpose accelerators like GPGPUs hardly reach ex-
tremely high speed for some complex tasks. A general strategy
for accelerating ANN in further is carrying out necessary com-
putations on VLSI chips for domain specified accelerations
(DSAs) [7], [8]. However, straight implementations of MACs
are resource- and power-hungry for any types of hardware.
To breakthrough the general trade-off between performance
and cost, it is expected to escape from the conventional ANN
topology.

Spiking Neural Networks (SNNs), a biological inspired
computational model, has appeared the potential of ultra effi-
cient and convenient implementations as a promising candidate
for substituting ANNs. In SNN theory, data is represented
by a series of stimulus similarly to the processing styles

inside bio-brain [9], [10]. By encoding the information to
stimulus (known as spikes), the massive and expensive MACs
of ANNs are avoided through observing and processing spikes
in specific schemes [11]. Since SNNs are event-driven, most
of its neurons and synapses are off-state and idle till events.
The processing power could be naturally lower than straight
computations for ANNs in further. Thus, the spiking fashion
of NNs lead the current trend of implementations of compact
hardware with low power [12]–[14]. Harvesting rich benefits
in terms of hardware efficiency, SNNs processors still suffer
from two challenges on the other hand. Firstly, the training
process of SNN is not as friendly as ANNs due to the discrete
representation of data. One of solutions is to implement
on-chip training by employing some advanced devices or
materials, memristor (RRAM [15]) and floating gate transistors
[16] for instances. Another practical strategy is implementing
the training phase off-chip through any friendly schemes such
as ANN; then, well-trained NNs are converted into spiking
schemes from specific methodologies [17]–[19] for inference
on-chip. In this manner, high quality inference can be achieved
by efficient hardware [20]. Beyond the training strategies,
the data form conversion is a serious and common bottle-
neck of any type of SNNs. In general SNN theory, complex
information can be carried on various appearance-features of
spikes including density, distribution, rate, and timing. For
instance, a typical representation is known as spike time
dependent plasticity (STDP) [20], which convert the data into
the spike series appearing as Poisson distribution. Obviously,
the translation or conversion of data form is expansive in sense
of hardware resource and processing time. Thus, a translation-
free scheme of SNN is demanded for efficient implementation.
Various features of spikes can be employ to carry complex
information including

In this work, the energy efficient scheme of SNN is
proposed for implementations of off-chip training and on-
chip inference. To perform the inference, the corresponding
ANNs are pre-trained and converted to the spiking scheme.
The data representation is achieved by the novel time-based
stochastic computing (TBSC) circuits without additional data-
converting mechanism and hardware, which are employed
as the input layer of proposed SNN. In this manner, the
hardware resource and energy consumption is reduced. In the
hidden and output layer, the analog current driving circuits
along with the membrane capacitors are designed as neurons
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Fig. 1. Overview of stochastic+spiking neural network

and synapses, where the multiplication and accumulation are
avoided. The transistor counting of each synapse and neuron
is 22, respectively. For proof-of-concept, several toy-examples
are demonstrated by classifications through real-world data-
set. All the classification tasks are performed with the accuracy
loss below 4% compared to well-trained ANNs. The energy
per spike and per inference are 0.94pJ and 0.88uJ , respec-
tively, which are 0.5x and 0.79x of state-of-art SNNs.

II. PRELIMINARY

A. Overview

The overview of proposed stochastic+spiking neural net-
work (SSNN) is illustrated in Fig. 1. A general full-connection
topology of NN is employed for behaving inference on-chip.
The analog signals carrying data are fed into the proposed
SSNN as input layer. All the synapses which link the input
layer to hidden layer are performed and processed in the
form of time-based stochastic numbers (see the details in
the following section, SNG indicates the stochastic number
generator); and the synapses linking the hidden layer to
output layer are represented by ordinary spiking scheme. In
this manner, the complicated conversion and generation of
spike coding is substituted by our novel stochastic computing
circuits.

B. Integrate-and-Fire model

The spiking neuron model used in this work is the simple
integrate-and-fire (IF) model without any leak. The IF spiking
neuron accumulates the input spikes xi(t) weighted by wi to
the membrane potential vmem(t) at time-step t and generates a
spike when the membrane potential exceeds a certain threshold
vth. When a spike is generated, the membrane potential is reset
to the initial voltage.

vmem(t+ 1) = vmem(t) +
∑
i

wixi(t) (1)

Note that the neuron dynamics is independent of the actual
magnitude of the time-step [18].

Fig. 2. Model-based normalization algorithm

C. Conversion-based approache

Since our proposed circuit is dedicated to off-chip learning,
the necessary weights for inference must be learned externally.
For the off-chip training, various training algorithms have been
reported, local learning like STDP, gradient-based learning,
and the conversion approach for instances. In this work, the
ANN-to-SNN conversion technology is adapted for simplify
the training process, which trains an ANN preliminary and
converts all the parameters into the form of SNN. The Model-
based normalization [17] is used to convert parameters. This
normalization re-scales all the weights by the maximum possi-
ble positive input of the layer. Figure 2 shows the step-by-step
procedure for this normalization.

Firstly, the sum of all positive weights connected to each
neuron on l layer is calculated; and the biggest one is picked up
(step1). Then, all the weights are re-scaled by using the picked
summation (step2). At last, the normalization is processed for
all the layers. The detail and proof of such technology is out
of the scope of this work, which is seen in SNN theory by P.
Diehl et al [17].

D. Data-encoding and Spike-representation

Figure 3 illustrates a simplifed example of the data represen-
tation and propagation. In this example, a simple data path is
introduced for entire link from the analog input to the spiking
output in the proposed SSNN. In the input layer, the time-
based stochastic computing (TBSC) is employed to carry the
data. The duty-cycle of periodic signals is used to represent
a specific data within the range of 0 to 1 (seen as pulse
width modulation (PWM)) [21]. Feeding this PWM coupled
by the specific weights into a neuron N1 of next layer, the
multiplication of input and weights is reflected by the output
of N1, which is seen as a series of spikes VN1 out. Then, the
spikes are fed into the former neuron N2 coupled with its
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Fig. 3. Example of data-encoding and spike-representation

Fig. 4. Time-Based Stochastic Nummber Generator

corresponding weight. Obviously, the spike-firing rate is used
to perform NN behavior in this work.

One of the key issues of such an SSNN is the efficient
generation of time-based SNs. A compact SNG is applied
to convert analog signal to PWMs as shown in Fig. 4. The
ring-oscillator powered by controllable current is designed to
generate saw-tooth oscillation. Then, the capacitor-coupling
technology is used on the gate of MOS transistors (known as
Neuron-MOS mechanism) for linearly programming the gate
potential and switching threshold. This part chops the oscilla-
tion into arbitrary duty-cycle from the shift of threshold level.
In this manner, the time-based stochastic number is efficiently
generated. As the bonus, the PWM signals compresses the
rate/density of spikes compared to the conventional scheme of
SNN, which helps reducing the processing time and energy
consumption. Time-baed stochastic computing (TBSC) have
been used for our data-encoding.

III. HARDWARE IMPLEMENTATION

The snapse and neuron implementations in any type of NNs
are expensive due to large scale of MACs, which are hardly
realized in fully parallel on-chip. An important benefit of SNN
is that MACs are substituted by the spike accumulations with
flexible impacts (weights for instance).

Fig. 5. Schematic diagram of the synapse.

Fig. 6. Schematic diagram of the neuron.

The current mode synapse circuit is designed in this work
as shown in Fig. 5. For single synapse, a current source is
switched to link the neuron by the pulses generated from the
previous layer (either SN or spikes). Obviously, the strength
or impact lies on both of current value and pules rate or width.
This phenomenon reflects the multiplication between input and
weights with signs efficiently. When the positive (negative)
weighted input comes, the Vsign is set to HIGH (LOW) and
the current flow out from (into) this specific synapse. By using
the proposed circuit, only a set of current mirror and several
CMOS switches are necessary with 22 transistors per synapse.

Figure 6 shows proposed neuron circuit. Collecting the
current from all the synapse branches into Iin, a membrane
capacitor is employed to accumulate the impact of all the
spikes in both of time and space domain. Entire neuron
circuits consists of three functional blocks (reset, soma, spike
generator) of 22 transistors in total. Soma block receives the
weighted current from synapses as input and charges and
discharges its capacitor C. When the potential of the capacitor
C exceeds a threshold of the buffer in the spike generator
block, the spike generator block becomes active and generates
one spike. After that, a switch connected in parallel to the
capacitor C is turned on, and the potential of the capacitor C
is reset to 0V (resetting state). Note that when the membrane
potential is 0V, even if a negative input is received, it does not
fall below 0V.
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Fig. 7. Spike widths with respect to the capacitance of buffer. As the
capacitance of the buffer increases, the width of the spike increases.

TABLE I
TRAINING FONFIGURATION FOR ANN

Network Stracture fully-connected 13-30-3
Activation Function Relu without Bias
Data Set Wine data-set [22]
Optimizer Adam [23]
Normalization 0.2 ∼ 1

Here, the spike width depends on the configuration of buffer
block. Although the spike strength is regularized for entire
SSNN, various widths lead to various features of spike rate.
A suitable width should be set according to the corresponding
mathematical behavior as expected. By configuring buffer
capacitance, the spike width is adjusted in any feature as
shown in Fig. 7 by circuit simulation results.

IV. EXPERIMENTAL SETUP

In this section, we outline the details of the experimental
setup. For instance, a toy example of small NN is demonstrated
for conveniently observing the signals inside our proposed
SSNN.

A. Traing ANN and Convert to SNN

First of all, a small scale of NN with three layers are
introduced as a preliminary experiment. The real-world data-
set for wine classification with 13 dimensions and three classes
[22] are used for observation. The ANN was constructed and
trained according to Tab. I and converted into SNNs of the
same structure using a conversion approach [17]. The input
data is normalized given by

xnorm,i =
xi − xmin

xmax − xmin
(2)

, where xnorm is normalized to x, and xmin is the minimum
value of x and xmax is the maximum value of x. The output
neurons 1st, 2nd, and 3rd correspond to labels 1, 2, and 3,
respectively.

B. Circuit simulation

The network is constructed as 13− 30− 3 as shown in Fig.
8(a) for the toy example. Employing the circuits mentioned
above, the VLSI circuit is designed simulated for entire SSNN
in a 0.18µm CMOS technology. The converted weights were
set by the current source on the synapse and VDD is set
to 1.8V. The input voltage range of the TBSC generator is
0.2V∼1V, and the generator output duty ratio is proportional
to the input voltage. If the input is 0.5V, the duty cycle is
50% (the on-time is 200ns) for instance. As the observation
of inference result, three output neurons are observed from
their firing rates. From the winner-take-all mechanism, the
most-frequently firing neuron indicates the classification label.
Similarly to other SNN implementations, the observation time
is flexible according to configuration, specific data-set, and
expected accuracy. In this work, a constant time window of
5µs is applied per inference.

V. CIRCUIT SIMULATION RESULT

A. Toy example of small SSNN

In this example, 13 input signals, 30 hidden neurons, and 3
output neurons can be observed by circuit simulation results
for 178 test samples. All the samples are classified by the
proposed circuit from the simulation results. Among these 178
samples and various observation points, one of samples along
with three output neurons and two exampled hidden neurons
are demonstrated as shown in Fig. 8(b). In this demonstration,
the correct label is expected as the first neuron winning.
The voltage waveform is, from the top, the output of the
TSBC generator, the output of the hidden layer neurons and
membrane potential, and the outputs of the three output layer
neurons. The first, second, and third output neurons are firing
for seven, three, and zero times, respectively. Therefore, the
classification result from the circuit simulation is correctly
observed. By the circuit simulations for all 178 samples, the
performance and cost of proposed SSNN is summarized in the
Tab. II. As the key performance, the classification accuracy is
investigated. The hardware implement of SSNN leads to the
accuracy loss of 4% compared to the well trained ANN as the
upper bound. Since the energy consumption depends on the
dynamic of inference data, the average energy with respects
to synapse, neuron and spike is summarized.

Figure 9 shows the comparison between the ideal waveform
(dotted line) and the circuit simulation (solid line) for the
membrane potential of the 5th, 6th, and 7th neurons in the
hidden layer. The ideal waveform is calculated by the mathe-
matical model with python based on the weights obtained by
the convert approach. The membrane potential of VN5 MEM

is 0V, as well as the ideal one. The amplitudes of the ideal
waveform of both VN6 MEM and VN7 MEM are consistent
with each other. However, there is an error in the period of
VN6 MEM in the ideal waveform and circuit simulation. It is
seen that the physics behavior from circuit simulation is almost
equivalent to the mathematical model.
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Fig. 8. Structure of small SSNN as toy example and its circuit simulation
results

TABLE II
SUMMARY OF 13-30-3 SSNN IMPLEMENTATION

Performance
Accuracy Loss ∗4%
Total power Consumption ∗∗1.424(mW)
Average Synapse power 0.294(uW)
Average Neuron power 12.12(uW)
Energy per spike 0.94(pJ/spike)
∗Original ANN has 99.9% accuracy, 99.9% after the
conversion to SNN, and 96.0% when running the circuit.
∗∗33 neurons, 460 synapses and 13 TBSC generators are
at 0.144mW, 0.4mW and 0.88mW respectively

B. Comparisons

For verifying the performance of larger SSNN than previous
toy example, additional experiments have been done by using
the MNIST data-set for recognizing hand writing letters. The

Fig. 9. Dynamic behaviors of circuit and mathematical model

TABLE III
COMPARIOSNS AMONG VARIOUS SNN IMPLEMENTATION

[24] [25] Proposed neuron
Technology 65nm 65nm 180nm
Analog/Digital Analog Digital Analog
Energy per spike (pJ/spike) 2 41.3 0.94
Max. spike rate (Mspike/s) 1.9 1.9 5.3

plain pixel values are directly fed into SSNN as input data.
Namely, only full connection NN is employed for reorgani-
zation. Only the mathematical model by python is used to
emulate the behavior of our SSNN instead of real circuit
simulation due to the explosion of simulation time by HSPICE.
The hardware cost is estimated on the basis of above toy
example. From Tab. III, the proposed neuron circuit consumes
0.5x energy of the analog one [24] and 43.94x energy per spike
than the digital one [25] in state-of-art. Therefore, the proposed
SSNN architecture can achieve lower energy per classification
as shown in Tab. IV in general.

We estimated the performance of MNIST based on Table II
for comparison and shows this comparison in Table IV

VI. CONCLUSION

A topology of stochastic+spiking neural network is pro-
posed in this work. The off-chip training and on-chip inference
is adapted. By converting the data into the form of time-based
stochastic number, the complicated spike coding algorithms/-
circuits are avoided. A set of current mode circuit for synapses
and neurons are designed and simulated in a 0.18µm CMOS
technology. Assembling massive synapses and neuron in fully
parallel, several inference tasks for real-world data-sets are
demonstrated with the average accuracy loss of 4%. From the
circuit simulation results, the proposed SSNN circuit achieves
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TABLE IV
COMPARISON FOR MNIST IMPLEMENTATION

[26] [27] Proposed Circuit
Network Type SNN ANN SNN
Analog/Digital Digital Digital Analog
Technology 65nm 28nm 180nm
Coding Scheme Rate N/A Time-based SC
Network Topology FC 3 Layer FC 5 Layer FC 3 Layer
Number of Neruons ∗316 1562 510
Energy per 1.12 360 ∗∗0.88Classification[uJ]
∗MNIST data-set down sampled from 28× 28 to 16× 16.
∗∗Cost is estimated on the basis of previous toy example.

low energy of 0.94pJ per spike, which is 0.5x of state-of-art
of low power SNN implementations. Moreover, the large scale
NN for MNIST is also emulated by mathematical model and
estimated by circuit simulations with the energy consumption
of 0.88uJ per classification, which is superior to state-of-art
digital and analog SNN implementations.
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