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Abstract—Variational quantum circuit algorithm is suggested
as a machine learning paradigm to utilize the power of Noisy
Intermediate-Scale Quantum hardware. Recent efforts lead to
better theoretical understanding of the expressibility and gener-
alization ability of quantum circuits. In this work, we compare
our previous results on the quantum circuit learnability based on
VC theory to some preliminary results based on PAC-Bayesian
method. Some recent developments based on other generalization
bounds due to other research groups are also reviewed and
discussed.

Index Terms—Quantum circuit, PAC learning, VC theory,
PAC-Bayesian

I. INTRODUCTION

A. Background
Supervised machine learning [1] is a possible direction to

harvest the advantage of Noisy Intermediate-Scale Quantum
(NISQ) [2], [3] hardware. Applying variational quantum cir-
cuit [4], [5] for hybrid quantum-classical supervised machine
learning leads to the quantum circuit learning (QCL) method
(or quantum neural network) [6]–[10]. There are recent ef-
forts toward the understanding of expressitivity and model
complexity of QCL [11]–[15]. The learnability of machines
can be understood with the Probably Approximately Correct
(PAC) model proposed by Valiant [16]–[19]. If a learning
machine has too much model complexity, it is possible to
overfit the data and the generalization ability would be bad.
For classiciation tasks, Vapnik–Chervonenkis (VC) theory
[20], [21] can be used to establish the generalization ability
by using the VC dimension [22]. For regression tasks, the
pseudo-dimension [23] and the fat-shattering dimension [24],
[25] could be used. PAC-Bayesian method [26]–[28] provides
an alternative way to get uniform PAC bounds, which is
usually tighter than that of VC theory [1]. Recent large-scale
comparative experiments of various generalization measures
suggests that PAC-Bayesian bound is useful [29].

B. Our results
Our recent study gives a VC dimesnion upper bound in

terms of circuit width and circuit depth, and provides a recipe

to control the model complexity of QCL [30]–[32]. In this
report, we present a summary and some further discussions
and investigations related to the expressibility and learnability.
In particular, we provide a PAC-Bayesian bound. The PAC-
Bayesian generalization bound is then compared to the VC
generalization bound in the case of QCL.

C. Related works

Many studies on the expressibility of quantum circuit have
been published [11]–[15]. Previous learnability results for
quantum machine learning are based on fat-shattering di-
mension for regression [33], pseudo-dimension for regression
[34], or quantum sample complexity for coherent quantum
states samples [35]. Recent researches on the quantum circuit
learnability lead to various generalization bounds. Abbas et al.
[36] give input-dependent results by using Fisher information.
Huang et al. [37] also provide input-dependent result based
on a different measure. Caro et al. give generalization bound
by using Rademacher complexity for Lipschitz loss functions
[38]. Their result is asymptotically equivalent to our result and
they also include more general encoding scheme. Du et al. [39]
give generalization bound for qudit systems by using covering
number bound [40] for Lipschitz loss functions. Bu et al. [41]
give Rademacher complexity bound in terms of Lp,q matrix
norm. Another VC-dimension upper bound, which is different
from our result, is recently proposed in Ref. [42]. Their bound
is in terms of the property of output measurable operator.

II. METHODS

A. Variational quantum circuit learning

In supervised binary classification learning problem, there is
an unknown target function f : X 7→ Y = {−1, 1}, and we are
given some training dataset {(~xi, yi = f(~xi))|~xi ∈ X} where
~xi is drawn from some unknown distribution ~xi ∼ P (~xi). (In
the setting that the training data is noisy, the dataset is drawn
from some unknown joint distribution (~xi, yi) ∼ P (~x, y).)
The goal of learning is to obtain a hypothesis h : X 7→ Y
such that the prediction error (out-of-sample error) Eout(h) =
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P~x∼P (~x)[h(~x) 6= f(~x)] (or Eout(h) = P(~x,y)∼P (~x,y)[h(~x) 6=
y] for the noisy case) is small.

In QCL [6], [7] we use quantum circuit as the hypothesis set.
The number of qubits n is also called circuit width. The circuit
starts with an input layer where the input data ~x is encoded
by |ψin(~x)〉 = ⊗n−1i=0 U(θi,in(~x))|0〉. After the input layer, the
trainable part Uθ = (U

(L)
loc (θL)Uent)...(U

(1)
loc (θ1)Uent)U

(0)
loc (θ0)

consists of alternating layers of trainable single qubit rotations
U

(j)
loc (θj) = ⊗n−1i=0 U(θi,j) and fixed (not trainable) entan-

gling layer. The local rotation could include any subset of
{RX , RY , RZ}. The number of layers is a hyper-parameter,
also known as circuit depth L. The measurement result is used
to compute the Z expectation values of i-th qubit

〈Zi(θ, ~x)〉 = Tr(ρin(~x)U
†
θZiUθ), (1)

where ρin = |ψin(~x)〉〈ψin(~x)|. The expectation value is then
thresholded by some value t for the binary classification,
leading to a hypothesis set H = {sgn(〈Zi(θ, ~x)〉− t)}. Multi-
class classification is done by the usual softmax method. Since
we are interested in NISQ applications, we use the Hardware
Efficient Ansatz (HEA) where the entangler consists of 2-
qubit quantum gate acting on nearest neighbor qubits for some
lattice. The learning circuit studied in this work is depicted
in , where the entangling lattice is an 1D ring with periodic
boundary condition, and the entangling gate is the controlled-Z
(CZ) gate. The local unitaries are {RY , RZ}.

B. Statistical learning theory: VC theory

We use the definition that the generalization error is
Eout(h)−Ein(h) for a hypothesis h ∈ H , where Eout(h) =
E(~x,y)∼P (~x,y)[1[h(~x) 6= y]] is the out-of-sample error (predic-
tion error) and Ein(h) = 1

N

∑N
i=1 1[h(~xi) 6= yi] is the in-

sample-error (training error). E is the expectation taken over
the unknown input distribution. 1 is the indicator function.
The VC generalization error bound is [20], [43]

Eout(h)− Ein(h) ≤
√

8

N
ln(

4mH(2N)

δ
), (2)

with probability ≥ 1− δ. N is the sample size. δ is the confi-
dence interval. The quantity mH(N) is a function which could
be bounded by mH(N) ≤ NdV C +1 for finite VC-dimension
dV C . VC dimension is the maximum number of points that
can be shattered by the hypothesis set H . In general, dV C
could be infinite for an uncountable hypothesis set. If dV C
is finite, then the generalization ability is guaranteed by the
VC bound. There are several advantages of VC theory [21]:
(1) VC bound is independent of the input distribution. (2) VC
bound is non-asymptotic, and it can be applied when the size
of training data set is small. (3) VC dimension is a property of
the hypothesis set, and is independent of individual hypothesis
and independent of the algorithm being used.

C. PAC-Bayesian analysis

PAC-Bayesian approach was proposed by McAllester [26]–
[28]. We use a simple version of PAC-Bayesian bound with
only prior probability distribution [26]

Eout(U)− Ein(U) (3)

≤

√
1

2N
[ln(

1

P (U)
+ ln(

1

δ
)) + 2 ln(N)] +

1

N
. (4)

U ⊆ H is a subset of the hypothesis set H . Eout(U) =
Eh∈UEout(h) and Ein(U) = Eh∈UEin(h) are expectation
value of Eout and Ein for random hypothesis drawn from
U according to the prior distribution. This bound depends on
the subset U and the prior probability. The full version of
PAC-Bayesian bound also depends on a posterior probability
distribution over the hypothesis set [28], but we use this
version for its simplicity.

D. Tensor networks: algorithmic light cone

Due to the locality and unitarity of 2-qubit entangling gate
used in HEA, the light cone limitation in the tensor network
can be applied [44]. The tensor contraction outside of the light
cone gives identities, hence only the qubits covered by the light
cone contribute to the hypothesis set. This limitation leads to
the limitation to the degree of trignometric polynomials and
hence limits the VC dimension [30].

III. RESULTS AND DISCUSSIONS

To use the PAC-Bayesian bound, consider the subset Uε
which is ε close to an arbitrary hypothesis h with some
distance measure. The setting is depicted in Fig. 1. The

Fig. 1. PAC-Bayesian setting.

distance measure that we use is the quantum state fidelity.
The probability density over fidelity F = |〈ψ|φ〉|2 for random
states |ψ〉 and |φ〉 drawn from n-qubit Haar distribution [45]
is given by

p(F ) = (2n − 1)F 2n−2, (5)

where n is the number of qubits (circuit width). We calculate
the cumulative distribution

P (Uε) = PHarr(ε) = P[F > (1− ε)] = ε2
n−1. (6)

See Fig. 2 for illustration. This provides the PAC-Bayesian
model complexity

ln(
1

P (Uε)
) = (2n − 1) ln(

1

ε
) (7)
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To make the comparisons between VC bound [30] and
PAC-Bayesian bound more readable, we make following two
simplification: (1). Assuming d = n, which means the input
feature space dimension is equal to the circuit width. (2). We
assume that 1D HEA PBC is used, and a single qubit output
measurement result 〈Z0〉 is used for prediction. With these two
simplifications, the effective circuit width covered by the light
cone is given by n′ = min{n, 2L + 1}. The PAC-Bayesian
complexity is then upper bounded by

ln(
1

P (Uε)
) ≤ (2n

′
− 1) ln(

1

ε
). (8)

The VC dimension is upper bounded by

dV C ≤ 32n
′
. (9)

Both VC and PAC-Bayesian complexity scales exponentially
with respect to n′. To ease the computation of VC bound, we
use the approximation ln((2N)dV C + 1) ≈ dV C ln(2N). The
comparisons of VC bound vs PAC-Bayesian bound scaling
with respect to sample size, circuit depth, and circuit width,
are plotted in Fig. 3. The parameters used are δ = 0.3 and
ε = 0.01.

Fig. 2. Haar distribution. n is the number of qubits (circuit width) (a).
Probability density of fidelity. (b). Cumulative distribution of fidelity.

The scaling behavior of PAC-Bayesian bound is similar to
the VC bound as expected. The PAC-Bayesian bound is gen-
erally better, although it depends on the arbitrary parameter ε.

Fig. 3. Comparing the VC bound to the PAC-Bayes bound. (a). Sample size
scaling. L = 4. N = 100. (b). Circuit depth scaling. n = 4. L = 4. (c).
Circuit width scaling. n = 4. N = 100.

However, this extra parameter could be useful for QCL, since
the quantum circuit hypothesis set can only be evaluated by
stochastic sampling from a quantum processor. The parameter
ε could serve as an estimation for sampling error (due to finite
number of shots) and hardware noise for quantum hardware.
How to incorporate the sampling error and hardware noise into
the PAC-Bayesian bound remains unknown to us.

IV. CONCLUSION

In this work, we provide a short discussion of various
generalization error bounds for variational quantum circuit
learning. We further provide a bound by using PAC-Bayesian
analysis, and the performance is compared to previous result
of VC dimension for simple cases. We see that the PAC-
Bayesian bound has similar behavior and has better generaliza-
tion performance. However, the PAC-Bayesian bound depends
on an arbitrary parameter ε. The arbitrariness can not be
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avoided in PAC-Bayesian, since the bound depends on the
prior and posterior distributions over hypothesis set. Further
investigation is required to understand the applicability of the
PAC-Bayesian bound in the QCL setting.
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