
An FPGA Implementation of Hough Transform using DSP blocks and block RAMs

Xin Zhou, Yasuaki Ito, and Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—Since FPGA chips maintain relatively low price
and its programmable features, it is widely used in those
fields which need to update architecture or functions frequently
such as communication and education areas. Especially, in
mobile devices that recently require the ability to perform
computation such as real-time image processing, FPGAs are
promising devices. The main contribution of this paper is to
present a new FPGA architecture for the Hough transform
that identifies straight lines in a binary image. Recent FPGAs
have hundreds of embedded DSP blocks and block RAMs.
For example, Xilinx Virtex-6 Family FPGAs have a DSP48E1
block, which is a configurable logic block equipped with fast
multipliers, adders, pipeline registers, and so on. They also have
a dual-port memory with 18Kbits as a block RAM. One of the
most important key techniques for accelerating computation
using FPGAs is an efficient usage of DSP blocks and block
RAMs. Our new architecture for the Hough transform uses
178 DSP48E1 blocks and 180 block RAMs with 18Kbits that
work in parallel. As far as we know, there is no previously
published work that fully utilizes DSP blocks and block RAMs
for the Hough transform. Roughly speaking, a conventional
sequential implementation performs 180m voting operations
for m edge points. Our architecture performs voting operations
in parallel, and outputs identified straight lines in m+97 clock
cycles. Since 180m voting operations are performed using 178
DSP48E1 blocks, the lower bound of the computing time is m
clock cycles. Hence our implementation is close to optimal. The
implementation results show that the Hough transform for a
512 × 512 image with 33232 edge points can be done in only
135.75µs.

Keywords-Image processing, Line detection, Hough trans-
form, FPGA, Embedded DSP blocks, Embedded block RAMs

I. INTRODUCTION

A Field Programmable Array (FPGA) is a programmable
logic device designed to be configured by the customer or
designer by hardware description language after manufac-
turing. The most common FPGA architecture consists of an
array of logic blocks, I/O pads, block RAMs and routing
channels. Furthermore, recent FPGAs have embedded DSP
blocks that make a higher performance and a broader
application.

The Xilinx Virtex-6 series FPGAs have DSP48E1 blocks
that are equipped with a multiplier, adders, logic operators,
etc [1]. More specifically, the DSP48E1 block has a two-
input multiplier followed by multiplexers and a three input
adder/subtractor/accumulator. The DSP48E1 multiplier can

perform multiplication of an 18bit and a 25bit two’s com-
plement numbers and produces one 48bit two’s complement
production. Programmable pipelining of input operands,
intermediate products, and accumulator outputs enhances
throughput and improves frequency. The DSP48E1 also has
pipeline registers between operators to reduce the delay. The
block RAM in the Virtex-6 FPGA is an embedded memory
supporting synchronized read and write operations. In the
Virtex-6 FPGA, it can configured as a 36Kbit dual port
block RAMs, FIFOs, or two 18Kbit dual port RAMs. In
our architecture, it is used as a 1K×18bit dual port RAM.

Since FPGA chips maintain relatively low price and its
programmable features, it is widely used in those fields
which need to update architecture or functions frequently
such as communication and education areas. They are widely
used in consumer and industrial products for accelerating
processor intensive algorithms [2], [3], [4], [5], [6], [7], [8].

Recently, mobile devices increasingly require the ability to
perform computation that is performed on desktop platforms.
To support the embedded processors in mobile devices, FP-
GAs will be used to implement coprocessors for applications
such as signal processing, image processing, data encryp-
tion/decryption, etc. Especially, to perform real-time image
processing such as object tracking and augmented reality
with embedded video cameras, an FPGA is a promising
device on mobile devices in the future.

Hough transform is a technique to find shapes in im-
ages [9]. In particular, it has been utilized to extract lines,
circles, ellipses and arbitrary shapes. The Hough transform
defines a mapping from an image into a parameter space
represented by an accumulate array. The parameter space
is defined by parameterizing detected shapes. Based on
each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The
elements that are increased represent associated parameters
based on detected shapes. Therefore, the elements that are
voted intensively correspond to the parameters of shapes in
the image space.

The Hough transform can be used to extract straight lines
in a binary image [10]. The idea of this method is to exploit
the duality between points of a line and parameters of that
line. A point in the image is represented by a curve in
the parameter space and lines of collinear points intersect
in the parameter space at one point. These intersections

 
Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140 
Volume 2, Number 1, pages 18–24, January 2013

- 18 -



are counted in an array of accumulators that quantizes the
parameter space appropriately. In the followings, we call this
counting to the accumulators voting. More specifically, for
each edge point (x, y) in a 2-dimentional image, the voting is
performed along a curve ρ = x cos θ+y sin θ (0 ≤ θ < 180).
Possible lines can be detected by searching points that are
voted intensively. Figure 1 shows an example of straight
line detection using Hough transform. For an input image
(Figure 1(a)), the binary edge image (Figure 1(b)) is obtained
by the edge detector such as Sobel filter. The result of voting
to the parameter space is shown in Figure 2. In this figure,
darker points show points that are voted intensively, that is,
represent probable lines. According to the result of voting,
the principal lines are detected (Figure 1(c)).

Figure 2. Hough parameter space

The main contribution of this paper is to present a
new FPGA architecture for the Hough transform that fully
utilizes embedded DSP blocks and block RAMs. Our new
idea includes:

Voting Space Partitioning:
Polar coordinate voting space (θ, ρ) is partitioned
and arranged into block RAMs. This enables us
to perform voting operations in parallel. Also, the
function of dual-port of block RAMs are fully used
to accumulate the voting value instantly.

Efficient Usage of DSP blocks:
DSP blocks are used to compute x cos θ and y sin θ
in parallel for each edge pixel (x, y). We compute
x cos θ and y sin θ for θ such that 0 ≤ θ < 90
instead of computing them for θ such that 0 ≤
θ < 180. Also, we avoid the computation of the
values of cos θ and sin θ by pre-loading them in
the DSP blocks.

Fully Pipelined Architecture:
We take into account a layout of DSP blocks and
block RAMs in Virtex-6 FPGA architecture, and
design our Hough transform architecture as a fully

pipelined one. For example, in the Virtex-6 FPGA
XC6VLX240T has 768 DSP48E1 blocks arranged
in 8 columns of 96 adjacent DSP48E1 blocks.
Neighboring DSP48E1 blocks are connected di-
rectly through pipeline registers. Our Hough trans-
form architecture uses 2 columns to compute
x cos θ and y sin θ each, and uses a pipeline tech-
nique to maximize the clock frequency.

Using these ideas, our new architecture for the Hough
transform uses 178 DSP48E1 blocks and 180 block RAMs
with 18Kbits that work in parallel. One of the most important
key techniques for accelerating computation using FPGAs is
an efficient usage of DSP blocks and block RAMs. Never-
theless, as far as we know, there is no previously published
work that fully utilizes DSP blocks and block RAMs for the
Hough transform. Roughly speaking, a conventional sequen-
tial implementation performs 180m voting operations for m
edge points. Our architecture performs voting operations in
parallel, and outputs identified straight lines in m+97 clock
cycles. Since 180m voting operations are performed using
178 DSP48E1 blocks, the lower bound of the computing
time is m clock cycles. Hence our implementation is close
to optimal. We have implemented our new architecture on a
Virtex-6 family FPGA XC6VLX240T-1. The circuit runs in
245.519MHz and outputs identified straight lines in m + 97
cycles. For example, Figure 1 includes 33232 edge points.
Therefore, the circuit can perform the Hough transform in
135.75µs.

Many hardware algorithms for FPGA implementation of
the Hough transform for lines have been proposed in past.
As far as we know, however, there is no published hardware
algorithm using embedded DSP blocks or multipliers in the
FPGA. In the existing researches, instead of circuits of mul-
tiplication with DSP blocks or multipliers, they introduced
incremental Hough transform [11], [12], [13], CORDIC [14],
[15], and hybrid-log arithmetic [16] to the computation of
Hough transform. Since most of recent FPGAs produced
by principal vendors equip embedded DSP blocks [17],
[18], [19], one of the most important key techniques for
accelerating computation using FPGAs is an efficient usage
of DSP blocks and block RAMs.

This paper is organized as follows. Section II introduces
the Hough transform algorithms for lines. We show the
FPGA architecture for the Hough transform in Section III.
Section IV shows the experimental results. Finally, Sec-
tion V concludes the paper.

II. HOUGH TRANSFORM

The main purpose of this section is to review Hough
transform algorithms for straight lines. Suppose that we have
an image of size n × n. We assume that n × n pixels are
arranged in two dimensional xy-space such that the origin
is in the center of the image as illustrated in Figure 3.

- 19 -



(a) Input image (b) Binary edge image by Sobel filter (c) Line detection using Hough transform

Figure 1. Example of straight line detection using Hough transform

n

n
x

y

θ

ρ

(x, y)

θ

ρ

0 180

n√
2

(θ, ρ)

− n√
2

n
2

n
2

−n
2

+ 1

−n
2

+ 1

n
2

Figure 3. Two dimensional Spaces xy and θρ used in the Hough transform

Hence, both coordinates x and y take integers in the range
[−n

2 + 1, n
2 ].

A pixel (x, y) (−n
2 + 1 ≤ x, y ≤ n

2 ) in the xy-space
is converted to a curve in the θρ-space by the following
formula:

ρ = x cos θ + y sin θ (0 ≤ θ < 180) (1)

Clearly, the double inequality − n√
2

< ρ ≤ n√
2

is satisfied.
The values of θ and ρ can also be obtained geometrically.
Suppose that we draw a line going through the origin with
angle θ as illustrated in Figure 3. For such line, we can draw
the orthogonal line going through a pixel (x, y). The value
of ρ corresponds to the distance to the line. In other words,
a point (θ, ρ) of θρ-space corresponds to a line of xy-space.

The key idea of the Hough transform is to vote
in θρ-space for every pixel in the xy-space. Let
(x0, y0), (x1, y1), . . . , (xk−1, yk−1) be the k pixels in xy-
space. The Hough transform is spelled out as follows:

[Straight Forward Hough Transform]
for i← 0 to k − 1

for θ ← 0 to 179
begin

ρ← xk cos θ + yk sin θ
v[θ][ρ]← v[θ][ρ] + 1

end
for θ ← 0 to 179 do

for ρ← − n√
2

to n√
2

do
output (θ, ρ) if v[θ][ρ] ≥ threshold

For simplicity, we assume that the value of ρ is automati-
cally rounded to an integer. In the Straight Forward Hough
Transform, for each point (xk, yk), the values of xk cos θ
and yk sin θ are computed for θ = 0, 1, . . . , 179. If v[θ][ρ]
is storing a large value, many points in the k input pixels
lie in the line in xy-space corresponds to a point (θ, ρ) in
θρ-space.

- 20 -



We will show that, it is sufficient to compute these
values for θ = 0, 1, . . . , 90. From the addition theorem of
trigonometric functions, we have

ρ = xk cos(180− θ) + yk sin(180− θ)
= −xk cos(θ) + yk sin(θ). (2)

Using Formula (2), the Hough transform can also be done by
partitioning the range [0, 179] of θ into two ranges [0, 89] and
[90, 179]. Also, we avoid going through array v for finding
elements larger than a threshold. Thus, our new Hough
transform, called the Circuit-oriented Hough Transform is
be spelled out as follows:

[Circuit-oriented Hough Transform]
for i← 0 to k − 1 do

begin
for θ ← 0 to 89 do

begin
ρ← xk cos θ + yk sin θ
v[θ][ρ]← v[θ][ρ] + 1
output (θ, ρ) if v[θ][ρ] = threshold

end
for θ ← 1 to 90 do

begin
ρ← −x cos(θ) + y sin(θ)
v[180− θ][ρ]← v[180− θ][ρ] + 1
output (θ, ρ) if v[θ][ρ] = threshold

end
end

In the following section, we show an efficient implementa-
tion of the Circuit-oriented Hough Transform.

III. OUR FPGA ARCHITECTURE FOR THE HOUGH
TRANSFORM

This section describes our FPGA architecture for the
Hough transform using DSP blocks and block RAMs in
Xilinx Virtex-6 FPGA. We use Xilinx Virtex-6 Family
FPGA XC6VLX240T-1 as the target device [20].

A. Structure of our architecture for the Hough transform

Figure 4 illustrates our architecture for the Hough
transform. We use 178 DSP blocks X1, X2, . . . X89 and
Y1, Y2, . . . , Y89. For each θ (0 ≤ θ ≤ 90) Xθ and Yθ

compute xk cos θ and yk cos θ for given xk and yk, respec-
tively. Since xk cos 0 = xk, xk cos 90 = 0, yk sin 0 = 0,
and yk cos 90 = yk, DSP blocks X0, X90, Y0, and Y90

are not necessary. Using an adder and a subtractor for each
pair Xθ and Yθ, ρθ = xk cos θ + yk cos θ and ρ180−θ =
−xk cos θ + yk cos θ are computed. We also use 180 block
RAMs V0, V1, . . . V179 to store the voting value. Address ρ
of each Vθ (0 ≤ θ ≤ 179) is used to store the value of
v[θ][ρ].

cos θ

xk

sin θ

yk

xk cos θ

yk cos θ

xk

yk

Figure 5. Two DSP blocks Xθ and Yθ with an adder and subtracter to
compute ρ

To minimize the delay between registers, DSP blocks
X1, . . . , X90 are connected in a pipeline fashion as illus-
trated in Figure 4. Each Xθ has a register to store the value of
xk. In every clock cycle, the value is transferred from Xθ to
Xθ+1. Similarly, DSP blocks Y0, Y1, . . . , Y90 are connected
in a pipeline fashion.

Figure 5 illustrates two DSP blocks Xθ and Yθ with an
adder and subtracter to compute ρ. In Xθ, the value of xk

is loaded in an internal register. Also, the value of cos θ is
pre-computed. Note that the value of cos θ used in Xθ is a
fixed value. The product of xk and cos θ is computed in a
multiplier of the DSP block Xθ. Similarly, the value of sin θ
used in Yθ is a fixed value and the product of yk and sin θ
is computed in a multiplier of the DSP block Yθ.

In the Virtex-6 FPGA XC6VLX240T, that is our target
device, has DSP48E1 blocks are arranged in 8 columns of
96 adjacent DSP48E1 blocks. Neighboring DSP48E1 blocks
are connected directly through pipeline registers. Our Hough
transform architecture uses 2 columns to compute xk cos θ
and yk sin θ each, and uses a pipeline technique to maximize
the clock frequency (Figure 6).

Figure 7 illustrates the architecture of Vθ using a block
RAM. A block RAM in the FPGA is dual port architecture.
Xilinx Virtex-6 Family has 18Kbit dual-port block RAMs,
which have two sets of ports operated independently. Two
sets of ports are:

Port Set A ADDRA (ADDRess A), DOA (Data Output
A), DIA (Data Input A), and

Port Set B ADDRB (ADDRess B), DOB (Data Output

- 21 -



X1 X2

Y1 Y2

V0 V1V179 V2V178

xk

yk

X89

Y89

V89V91V90

(θ, ρ)

Figure 4. The outline of our FPGA architecture for the Hough transform

�
cos1

xk cos1

�
cos2

xk cos2

�
cos89

xk cos89

xk

xk (=xk cos0)

89 DSP blocks

�
sin1

yk sin1

�
sin2

yk sin2

�
sin89

yk sin89

yk

yk (=yk sin90)

89 DSP blocks

Figure 6. Pipeline architecture to compute xk cos θ and yk sin θ with
DSP blocks

B), DIB (Data Input B).

Let M [i] denote a data of address i of the block RAM. In
read operation of Port Set A, M [ADDRA] is output from
DOA after the rising clock edge. In write operation of Port
Set A, the data given to DIA is written in M [ADDRA] at
the rising clock edge. Read/write operations of Port Set B
are the same as Port Set A. Port Set A and Port Set B work
independently. In the block RAMs in the target device of
this work, read/write operations can be configured as either
RF (Read First) mode or WF (Write First) mode. In the RF
mode, if reading and writing operations are performed to
the same address, reading operation is performed before the
reading operation. Hence the reading data is the data before

writing data. On the other hand, in the WF mode, since the
writing performed before the reading, the reading data is
the updated data. However, when a dual port is used, there
is a restriction that if read and write operation to the same
address are performed for each port, the setting of block
RAMs must be RF [21].

We use the block RAM to store the values of v[θ][ρ]
(− n√

2
< ρ ≤ n√

2
). Let vθ[i] denote the data of address i

in block RAM Vθ. Since ρ is given to it ADDRA, vθ[ρ] is
output from DOA after the rising clock edge as illustrated
in Figure 7. After that, vθ[ρ]+1 is computed and it is given
to DOB. Since ρ is given to ADDB, vθ[ρ] + 1 is written in
vθ[ρ]. In other words, vθ[ρ] ← vθ[ρ] + 1 is performed. At
that time, according to the restriction stated in the above,
since the same value of ρ may be input continuously, the
setting of block RAMs must be RF. Namely, when the same
value of ρ is input continuously, the former voted value is
not read from the block RAM. To avoid this situation, we
use an additional register to store the latest voted value and
if the same value of ρ is input continuously, the stored value
is used instead of the value read from the block RAM.

In the same time, a comparator is used to determine if
vθ[ρ] + 1 = threshold . If so, the value of ρ is written
in a register. After that, a pair (θ, ρ) is written into a
next register. The pair (θ, ρ) represents a probable line. It
moves toward the output of the circuit using series of shift
registers one by one shown in Figure 4. In order to reduce
the number of clock cycles necessary to move data to the
output, we use two series of shift registers. One is used
for output data of V0, . . . , V89. The other is used for output
data of V90, . . . , V179. Therefore, the number of clock cycles
necessary to move data to the output is reduced to at most
90 clock cycles.

- 22 -



+1

ADDRA
DOA

ρ

ADDRB

DIB

ρ

ρ

threshold

(θ, ρ)

vθ[ρ]

=

θ

=

vθ[ρ] + 1

block RAM

Figure 7. A block RAM Vθ to store v[θ][ρ]

B. Data representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed
and power consumption. Higher precision will lead to less
quantization error in the final implementation. On the other
hand, lower precision will produce more compaction and
faster designs with less power consumption. A trade-off
choice needs to be made depending on the given application
and available FPGA resources.

In our work, in order to minimize chip space and compu-
tation time, short fixed point representation of numbers are
used. Considering the structure of DSP blocks and block
RAMs, we choose the data presentation in our implementa-
tion, as follows. The data format of inputs that are pairs of
coordinates xk and yk are 10bit two’s complement integer
each. Also, the data format of cos θ and sin θ is 16bit fixed
point number, which consists of 1bit sign, 1bit integer and
14bit fraction based on two’s complement. On the other
hand, the data format of ρ is 10bit two’s complement integer.
The data format of the voted value is 18bit integer. Namely,
the number of the vote is at most 218 − 1. Since the range
of the value of θ is 0 to 180, the data format of θ is 8bit
integer.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed architecture for
Hough transform and evaluated it on the Xilinx Virtex-
6 FPGA XC6VLX240T-1. Table I shows the experimental
results using Xilinx ISE 13.1. In the implementation, to

reduce the delay of the circuit, some pipeline registers are
inserted into between circuit elements. It takes 3 clock cycles
to compute the values of ρ for given xk and yk. Also,
4 clock cycles are necessary to output a pair (θ, ρ) that
represents a probable line. Moreover, the number of clock
cycles necessary to move data to the output is reduced to
at most 90 clock cycles. Therefore, this circuit can output
identified straight lines represented by (θ, ρ) in m + 97
cycles, i.e., m+97

245.519µs. For example, Figure 1(b) includes
33232 edge points. Therefore, the circuit can perform the
Hough transform in 135.75µs. If the input image is worst
case in terms of the computing time, that is, if all the points
of an image of size 512×512(= 262144) are edge points, it
takes 1068.11µs to complete to output the results. Of course,
it is not possible that all points are edge points, however, this
fact guarantees that our Hough transform implementation for
any 512× 512 image terminates in less than 1068.11µs.

Table I
PERFORMANCE EVALUATION OF THE PROPOSED ARCHITECTURE FOR

HOUGH TRANSFORM

DSP48E1 blocks (out of 768) 178 (23.1%)
18Kbit block RAMs (out of 832) 180 (21.6%)
Slices (out of 301440) 14493 (4.81%)
Clock frequency [MHz] 245.519

For the purpose of estimating the speed up of our FPGA
implementation, we have also implemented a conventional
software approach of Hough transform using GNU C. We
have used Intel Xeon X7460 running in 2.66GHz and
128GB memory to run the sequential algorithm for Hough
transform. For the image shown in Figure 1(b) that includes
33232 edge points, the software implementation can perform
the Hough transform in 44.72ms. Also, if all the points of
an image of size 512 × 512(= 262144) are edge points, it
takes 340.82ms to complete to output the results. Therefore,
our FPGA implementation attains a speed-up factor of more
than 300 over the sequential implementation on the CPU.

There are a number of literatures reported to imple-
ment Hough transform for lines using the FPGA shown
in Section I. Performances such as device, logic blocks,
DSP blocks, frequency and throughput are compared in
Table II. It is difficult to directly compare to other works
because utilized FPGAs and supported size of images differ.
Considering the throughput, however, it is clear that the
performance of our FPGA implementation is better than that
of other works.

V. CONCLUSIONS

We have presented a new architecture of the Hough
transform for the straight lines using DSP blocks and block
RAMs in the Virtex-6 Family FPGA. Partitioning the param-
eter space to vote, the 180 voting operations are performed
in parallel with 178 DSP48E1s and 180 18Kbit block RAMs.

- 23 -



Table II
COMPARISON WITH RELATED WORKS FOR HOUGH TRANSFORM

Karabernou [14] Deng [15]
Device XC4010EPC84 XC4010XL
Logic blocks 205 CLBs 333 CLBs
DSP blocks — —
Frequency 23.166MHz 40MHz
Throughput 10.368Mpixel/s 0.623Mpixel/s

Lee [16] This work
Device Virtex 4 XC6VLX240T-1
Logic blocks 314 CLBs 14493 Slices
DSP blocks — 178 DSP48E1s
Frequency 132MHz 245.519MHz
Throughput 32.768Mpixel/s 245.428Mpixel/s

We have implemented our architecture on the Virtex-6
Family FPGA XC6VLX240T-1. The experimental results
show that this implementation runs in 245.519MHz and
given m coordinates of edge points, it can output identified
straight lines in m + 97 cycles, i.e., m+97

245.519µs.

REFERENCES

[1] Xilinx Inc., Virtex-6 FPGA DSP48E1 Slice User Guide (v1.3),
2011.

[2] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY
parsing using FPGAs,” IEICE Transactions on Information
and Systems, vol. E86-D, no. 5, pp. 803–810, May 2003.

[3] ——, “Instance-specific solutions to accelerate the CKY pars-
ing for large context-free grammars,” International Journal on
Foundations of Computer Science, pp. 403–416, 2004.

[4] Y. Ito and K. Nakano, “Efficient exhaustive verification of
the Collatz conjecture using DSP blocks of Xilinx FPGAs,”
International Journal of Networking and Computing, vol. 1,
no. 1, pp. 49–62, 2011.

[5] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,” International
Journal of Networking and Computing, vol. 2, no. 1, pp. 56–
78, 2012.

[6] K. Nakano and E. Takamichi, “An image retrieval system us-
ing FPGAs,” IEICE Transactions on Information and Systems,
vol. E86-D, no. 5, pp. 811–818, May 2003.

[7] K. Nakano and Y. Yamagishi, “Hardware n choose k counters
with applications to the partial exhaustive search,” IEICE
Trans. on Information & Systems, 2005.

[8] Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation
for neural networks with the FDFM processor core approach,”
International Journal of Parallel, Emergent and Distributed
Systems, pp. 1–13, 2012.

[9] P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

[10] R. O. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,” Communications of the
ACM, vol. 15, no. 1, pp. 11–15, 1972.

[11] S. Tagzout, K. Achour, and O. Djekoune, “Hough transform
algorithm for FPGA implementation,” Signal Processing,
vol. 81, no. 6, pp. 1295–1301, 2001.

[12] H. Bessalah, S. Seddiki, F. Alim, and M. Bencherif, “On line
mode incremental Hough transform implementation on Xilinx
fpga’s,” in Proc. of the 8th conference on Signal, Speech and
image processing, 2008, pp. 176–179.

[13] O. Djekoune and K. Achour, “Incremental Hough transform:
an improved algorithm for digital device implementation,”
Real-Time Imaging, vol. 10, no. 6, pp. 351–363, 2004.

[14] S. M. Karabernou and F. Terranti, “Real-time FPGA imple-
mentation of Hough transform using gradient and CORDIC
algorithm,” Image and Vision Computing, vol. 23, no. 11, pp.
1009–1017, 2005.

[15] D. D. S. Deng and H. ElGindy, “High-speed parameterisable
Hough transform using reconfigurable hardware,” in Proc.
of the Pan-Sydeny area workshop on Visual information
processing, vol. 11, 2001, pp. 51–57.

[16] P. Lee and A. Evagelos, “An implementation of a multiplier-
less Hough transform on an FPGA platform using hybrid-log
arithmetic,” in Proc. of Real-Time Image Processing 2008,
vol. 6811, 2008, pp. 68 110G–1.

[17] Xilinx Inc., Virtex-4 FPGA User Guide(v2.6), 2008.

[18] ——, Virtex-5 FPGA User Guide(v5.2), 2009.

[19] Altera Corp., Stratix V Device Handbook, 2012.

[20] Xilinx Inc., Virtex-6 Family Overview(v2.4), 2012.

[21] ——, Virtex-6 FPGA Memory Resources User Guide (v1.6),
2011.

- 24 -




