
A Design Scheme for Highly Efficient
Mixed-Criticality Systems Using IPC Control

1st Kosuke Yashima
Graduate School of Science and Technology

Keio University
Kouhoku-ku, Yokohama-shi, kanagawa, Japan, 223-8852

yashima@ny.ics.keio.ac.jp

2nd Nobuyuki Yamasaki
Graduate School of Science and Technology

Keio University
Kouhoku-ku, Yokohama-shi, kanagawa, Japan, 223-8852

yamasaki@ny.ics.keio.ac.jp

Abstract—In a safety-critical real-time system, the system must
keep running even when the task execution time is longer than
expected. The Mixed Criticality (MC) system can satisfy the time
constraint of the hi task by discarding the low-priority task (lo
task) and allocating computing resources to the high-priority
task (hi task) in an emergency when the amount of data to
be processed increases significantly. However, discarding the lo
task may degrade the QoS of the system. In this paper, Fluid
scheduling is implemented in the MC system using an IPC control
mechanism that controls the execution speed of each thread in the
SMT (Simultaneous Multithreading) processor, and the number
of lo tasks discarded in an emergency is reduced. The proposed
method in this paper successfully maintains the high QoS of the
MC system.

Index Terms—real-time scheduling, mixed criticality, fluid
scheduling, SMT processor

I. INTRODUCTION

In real-time systems, the value of processing depends not
only on the completion of task execution but also on meeting
time constraints. Real-time scheduling determines the order of
task execution by determining the priority of tasks from the
time constraints of the tasks to satisfy the time constraints.
Fluid scheduling is one of the optimal real-time scheduling
methods applicable to multiprocessors [1]. Fluid scheduling
is a scheduling algorithm that processes tasks at a constant
execution rate from their release until their deadline. However,
Fluid Scheduling requires controlling the execution speed of
threads, which is not feasible on general processors due to
the lack of a mechanism to control the execution speed. Fluid
scheduling can be realized by using a mechanism to control the
execution speed of each thread in SMT (Simultaneous multi-
threading) processors called the IPC control mechanism [2].

In recent years, mixed-criticality (MC) systems have at-
tracted attention in real-time systems, which can cope with
systems where the execution time of critical tasks varies. Here,
a critical task is a task that would cause a severe loss to the
system if the time constraint is not kept. Such a system is
exemplified by air traffic control, where the execution time
of the air traffic control task varies depending on the number
of aircraft. In an emergency where the execution time of a
task with high importance is extended, and the time constraint
cannot be kept, MC systems can satisfy the time constraint

Identify applicable funding agency here. If none, delete this.

and execute the task by cutting off the less important task and
securing the execution time of the more critical task. Lee and
his teams proposed MC-Fluid as a multiprocessor MC system
using optimal real-time scheduling [3]. Since MC-Fluid uses
Fluid scheduling, it cannot be applied to natural systems on
general processors where the execution speed of tasks cannot
be controlled. In addition, the QoS of the entire system is
lowered due to the truncation of less critical tasks.

This paper applies MC-Fluid to a real system by executing
tasks based on MC-Fluid using the IPC control mechanism.
In addition, by using surplus computing resources, MC-Fluid
can execute as many less important tasks as possible, which
are discarded in the MC system in an emergency.

This paper is organized as follows. Chapter 2 describes
the background of this paper, MC system, fluid scheduling,
and IPC control mechanism. Chapter 3 discusses related
research. Chapter 4 describes the proposed method. In Section
5, the effectiveness of the proposed method is evaluated and
discussed. Finally, Section 6 summarizes the paper.

II. BACKGROUND

A. Fluid scheduling

Fluid scheduling is an optimal scheduling method for mul-
tiprocessors [?] because it ensures that the processors always
process tasks at a constant execution rate from the time of
task release to the deadline, which results in 100% processor
utilization. Let Ci denote the remaining execution time of a
task τi whose deadline coincides with the cycle, Ci the cycle
Ti, and ri the arrival time, Fluid scheduling runs tasks at a
constant speed from Ci to ri + Ti. The execution speed θi
based on Fluid Scheduling can be expressed as follows.

θi =
Ci

Ti
(1)

Figure 1 shows an example of Fluid Scheduling. The
vertical and horizontal axes represent the remaining execution
time and time, respectively. The vertical and horizontal axes
are scaled the same. Scheduling on a general processor is
shown by a solid line, while a red dotted line shows Fluid
scheduling. It can be seen that Fluid scheduling runs at a
constant execution speed from the remaining execution time
to the deadline. However, since Fluid Scheduling requires a

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 12–15, January 2024

– 12 –



constant thread execution speed, a general processor cannot
follow the straight line of Fluid Scheduling.

Fig. 1. execution exaple of fluid scheduling

Therefore, pseudo-fluid scheduling, such as P-fair, has been
proposed to achieve linear execution of fluid scheduling on
general processors [4]. P-fair reproduces the same execution as
Fluid Scheduling by repeatedly executing and stopping tasks.
In this case, the slope is 45 degrees when the task is executed
and 0 degree when it is stopped. However, P-fair scheduling
has a disadvantage in that there are many context switches,
and the overhead is significant.

B. Mixed Criticality System
In a Mixed Criticality (MC) system, tasks and system

modes have a criticality parameter. Tasks that cause significant
damage to the system in the event of a deadline error are
given a higher priority. For simplicity, we assume two types of
criticality, LO and HI. In this case, a task is classified as either
a low-priority LO task or a high-priority HI task. There are two
system modes: LO mode for normal mode and HI mode for
emergency mode. The MC system defines several worst-case
execution times (WCET) for hi tasks, assuming task execution
times vary depending on the situation. In the typical case,
LO WCET(CL

i ) is used. When the execution time of the hi
task is extended in an emergency, the WCET is extended to
HI WCET(CH

i ), which is longer than LO WCET, to keep the
time constraint of the hi task.

Next, the behavior of the MC system is described. First, the
system operates in LO mode, which is the normal mode. In LO
mode, both lo and hi tasks are executed. When the execution
time of the hi task exceeds CL

i , the system transitions to HI
mode. In HI mode, the lo task is discarded, and only the hi task
is executed using the remaining computing resources to keep
the time constraint of the hi task. In this case, the WCET of
the hi task is extended to HI WCET. The system administrator
sets the condition for returning from HI mode to LO mode,
which is often determined on a Utilization basis. WCET of
the hi task returns to LO WCET. In a standard MC system,
all lo tasks are discarded when the system transitions to HI
mode, which reduces the QoS of the entire system.

C. IPC Control Scheme
IPC (Instruction Per Clock cycle) is the number of instruc-

tions executed per clock cycle. The IPC control scheme con-
trols the execution speed of each thread of the SMT processor.

This scheme improves the predictability of task execution time
and scheduling accuracy. The operation procedure of the IPC
control is as follows: First, the software inputs the target IPC
and the control period. Then, the IPC of the control cycle is
observed, the difference between the observed IPC and the
target IPC is calculated, and the number of instruction fetches
is controlled so that the target IPC is approached in the next
cycle. This kind of feedback control brings the IPC closer to
the target IPC.

III. RELATED WORKS

A. MC-Fluid

MC-Fluid is an MC system that uses fluid scheduling, an
optimal multiprocessor scheduling [3]. MC-Fluid defines two
execution rates as well as a system mode. When the remaining
execution time is less than or equal to CL

i , the execution
follows the execution rate of the LO mode (θLi ), and no mode
transition occurs. However, when the actual execution time
exceeds CL

i , a mode transition occurs, and the mode becomes
HI mode. In this case, all lo tasks are discarded, and the hi
task uses the freed computational resources, which runs at a
faster execution speed (θHi ).

Fig. 2. execution exaple of MC-Fluid

Figure 2 shows an example of MC-Fluid execution. The
blue line represents the execution speed θLi in LO mode,
and the red line represents the execution speed θHi in HI
mode. In addition, a pseudo-deadlineD

′

i is set for the transition
condition from LO mode to HI mode. Since the product of
execution speed and execution time represents the amount of
execution, let Ei(t) denote the amount of execution after t
seconds of execution, which is represented by the following
equation.

Ei(t) = θi × t (2)

Also, since the execution speed θLi is θLi < 1

Ei(C
L
i ) = θLi × CL

i < CL
i (3)

At time CL
i , the execution volume is less than CL

i . By defin-
ing the pseudo-deadline D′

i, the execution volume becomes
CL

i at the D′
i.

D′
i =

CL
i

θLi
(4)

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 12–15, January 2024

– 13 –



If the sum of lo tasks utilization in LO mode is UL
L , the

sum of hi tasks utilization in LO mode is UL
H . The sum of

the utilization of hi tasks in HI mode is UH
H , the execution

speed is defined as follows, and it is possible to keep the time
constraint after the mode transition when the execution speed
is given like this [5].

ρ = max
{UL

L + UL
H

m
,
UH
H

m
, max
τi∈τH

{uH
i }

}
(5)

θHi =
uH
i

ρ
(6)

θLi =
{ uL

i θ
H
i

θHi − (uH
i − uL

i )

}
(τi ∈ τHI) (7)

θLi = uL
i (τi ∈ τLO) (8)

B. Fluid Scheduling by Using IPC Control Scheme

Fluid scheduling requires controlling the execution speed
of tasks for each thread, but general processors cannot realize
Fluid scheduling because they cannot control the thread execu-
tion speed. Fluid scheduling using the IPC control mechanism
(IPC-Fluid) [6] controls the thread execution speed of SMT
processors to enable task execution according to Fluid schedul-
ing. In IPC-Fluid, the remaining execution clock cycles are
set to WCEC at the beginning of each cycle and executed at a
constant speed. While WCET is used for general scheduling,
WCIN (worst-case Case Instruction Number) is used for Fluid
scheduling with the IPC control mechanism. The target IPC
(IPC target) is expressed as follows using WCIN.

IPCtarget =
WCIN

WCEC
(9)

IV. IPC-MC-FLUID

In order to realize the MC-Fluid mentioned above in a nat-
ural system, we propose IPC-MC-Fluid, which enables IPC-
Fluid to be applied to MC-Fluid. In addition, the conventional
MC-Fluid could not execute lo tasks in HI mode, but we have
made it possible to execute lo tasks in HI mode by using extra
computing resources.

A. Design of IPC-MC-Fluid

The execution speeds in the IPC-MC-Fluid LO and HI
modes are the same as those proposed for MC-Fluid, re-
spectively. The parameter required for IPC-Fluid control is
Target instruction. Target instruction is calculated by IPC
control period and execution speed as follows.

Targetinstruction = θ × IPCcontrolperiod (10)

As in MC-Fluid, the transition condition from LO mode to
HI mode is when the hi task has not finished executing when
the pseudo-deadline is reached. In this case, the lo task that
can be executed in HI mode is selected, and the lo task that is

Algorithm 1 Selecting lo task to execute in HI mode

1: i← 0
2: IPCremaining ← IPCmax − UH

H

3: Sort lo tasks in order of decreasing IPC
4: while IPCremainig > 0 do
5: if τi ∈ τLO

i then
6: IPCremaining ← IPCremaining − uLO

i

7: i← i+ 1
8: end if
9: end while

10: for ; i < TASK MAX; i← i+ 1 do
11: τi into dropped queue
12: end for

not selected is discarded. Lo task selection is determined by
the algorithm described below.

The transition condition from HI mode to LO mode is when
the sum of Utilization in the current period (Ucurrent) falls
below UL

L + UL
H , the sum of Utilization of all tasks in LO

mode. This judgment is made every hyper period of the task
set.

B. Selection of lo task to execute in HI mode

We propose an algorithm to execute as many lo tasks as
possible in HI mode. If the total Utilization of hi tasks in HI
mode is UHH, the excess IPC in HI mode (IPC remaining)
can be calculated as follows:

IPCremaining = IPCmax − UH
H (11)

IPC max is the maximum total IPC the system can ac-
cept. If the IPC of a lo task is less than or equal to
IPC remaining, the lo task can be executed in HI mode.
Lo tasks that meet this condition are selected in order of
decreasing IPC, and each time, the IPC of the selected lo task
is subtracted from IPC remaining. This operation is repeated
until IPC remaining is less than or equal to 0.

V. EVALUATION

This section compares the schedulability performance and
lo task execution rate between the proposed method IPC-MC-
Fluid and other MC system multiprocessor scheduling. G-EDF
was selected as the multiprocessor scheduling for comparison.
First, we describe the evaluation environment.

A. Evaluation Environment

In this study, RMTP (Responsive Multi-threded Processor),
an SMT processor for embedded real-time systems, is the
implementation target. RMTP is an 8-way SMT processor
with eight hardware logic cores. The configuration of RMTP is
shown in Table 1. The evaluation was performed by mapping
the SRMTP described above to the Virtex UltraScale+ HBM
VCU128 FPGA evaluation kit. The Benchmark used was
Mibench’s qsort,bitcount.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 12–15, January 2024

– 14 –



TABLE I
CONFIGURATION OF RMTP

papameter value
ALU 4
FPU 2

FPU Div 1
Load/Store Unit 1

64bit SIMD 1
Branch Unit 2
Vector Int 1
Vector FP 1

Active threads 8 threads
Fetch Width 8 inst from 1 thread

Issue/Commit Width 4 inst
Reservation Station
(Int, FP, Mem/Br) 16 entry each

Reorder Buffer 16 entry each

Instruction Cache 8way set associative
Cache argorithm:LRU / priority

Data Cache 8way set associative
Cache argorithm:LRU / priority

B. Schedulability Performance

Fig. 3. Schedulability evaluation

In this section, we evaluate the schedulability, which indi-
cates to what extent the total utilization of the task set can
be executed within the time constraints. The figure 3 shows
the schedulability evaluation of G-EDF and IPC-MC-Fluid.
The vertical axis represents the Acceptance ratio, and the
horizontal axis represents the total Utilization of the task set.
The acceptance ratio is calculated using the following formula.

acceptance raio =
♯Num of task sets with no deadline misses

♯Num of generated task sets
(12)

G-EDF was able to schedule up to 250% utilization with-
out missing deadlines. The proposed method, IPC-MC-Fluis,
could schedule up to 320% utilization without missing dead-
lines.

C. lo task execution rates

The figure shows the evaluation result of lo task execution
rates. lo, task execution rates are calculated by the following
equation.

acceptance raio =
♯Num of successfully executed lo tasks

♯Num of generated lo tasks
(13)

Fig. 4. lo task execution ratio

Since G-EDF discards all lo tasks during the mode switch,
the more frequently the mode switch occurs, the fewer lo tasks
are executed. The figure also shows that the execution rate
drops from 200% utilization to about ten at 400% utilization.

On the other hand, IPC-MC-Fluid executes the lo task
even in HI mode, so the lo task execution rates remain high
compared to G-EDF.

VI. CONCLUSION AND FUTURE WORK

Because the execution speed cannot be arbitrarily controlled
on general processors, fluid scheduling, an optimal multipro-
cessor scheduling method, cannot be realized, and MC-Fluid
using fluid scheduling could not be realized on a natural
system. In this paper, we control the execution speed of SMT
processor threads by the IPC control mechanism to realize
fluid scheduling and realize MC-Fluid, a highly efficient MC
system, on a natural system. Compared with conventional mul-
tiprocessor MC systems, the proposed method shows improved
schedulability. In addition, the execution rate of lo tasks was
kept high, and the QoS of the whole system was maintained.

As a future issue, it is necessary to make MC systems viable
even with three or more importance levels since few systems
are completed with only two (LO and HI).

REFERENCES

[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” vol. 15, June
1996, pp. 600–625.

[2] K. Matsumoto, H. Umeo, and N. Yamasaki, “A thread control scheme for
real-time microprocessors,” in 2011 IEEE 17th International Confernce
on Embedded and Real-Time Computing Systems and Applications, vol. 2,
2011, pp. 16–21.

[3] J.Lee, S.Ramanathan, K.Phan, A.Easwaran, and I.Shin, “MC-Fluid:
Multi-core fluid-based mixed-criticality scheduling,” in IEEE Transaction
on Computers, vol. 67, no. 4, April 2018, pp. 469–483.

[4] P. Holman and J. Anderson, “Adapting pfair scheduling for symmetric
multiprocessors,” in 2020 IEEE Symposium in Low-Power and High-
Speed Chips (COOL CHIPS), June 2005, pp. 543–564.

[5] S. Baruah, A. Easwaran, and Z. Guo, “MC-Fluid: simplified and optimally
quantified,” in IEEE Real-Time Systems Symposium, December 2015, pp.
327–337.

[6] Y. Tsukahara and Y. Nobuyuki, “Implementation of fluid scheduling using
ipc control mechanism,” in 2019 IEEE 25th International Conferenceon
Parallel and Distributed Systems (ICPADS), 2019, pp. 402–405.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 12–15, January 2024

– 15 –


