
Building an Automated Deobfuscation System
that Integrates Multiple Deobfuscation Tools

(preliminary version)
1st Kohei Arai

Kogakuin University
Tokyo, Japan

em24003@ns.kogakuin.ac.jp

2nd Ryotaro Kobayashi
Kogakuin University

Tokyo, Japan
ryo.kobayashi@cc.kogakuin.ac.jp

Abstract—The main purpose of program obfuscation is to
protect the security of a program’s source code and prevent
its misuse. However, attackers can also exploit obfuscation
to make analysis and detection of their own programs more
difficult. Therefore, it is necessary to deobfuscate the source code
during analysis; however, the numerous obfuscation methods
available make deobfuscation challenging. In this paper, we
aim to automate a system that encompasses deobfuscation tools
for multiple methods. Our system employs a detection tool for
malicious JavaScript files, a deobfuscation tool for JavaScript, a
deobfuscation tool for XOR obfuscation, and a deobfuscation tool
for Portable Executable (PE) files in order to achieve detection
and deobfuscation. From our results, we confirm the detection
of malicious JavaScript files and the deobfuscation of obfuscated
files, while for PE files, we verified deobfuscation at the same level
as the source code. The implementation of this system enables
efficient deobfuscation of numerous obfuscated programs.

Index Terms—Deobfuscation, Automated System, XOR,
Packer, JavaScript

I. INTRODUCTION

Obfuscation involves concealing a program’s source code
and making reverse engineering difficult. Its primary purpose
is to protect the security of the source code and prevent
its misuse. However, attackers can also exploit obfuscation
to make analysis and detection of their own programs more
difficult, necessitating deobfuscation by code analysts. Various
obfuscation techniques exist, with packers and XOR being
commonly used in many programs. Notable packers include
UPX and ASPack. When unpacking libraries are unavailable or
proprietary, however, manual deobfuscation is required. There
are two main types of deobfuscation: static and dynamic.
Examples of static deobfuscation include using unpackers,
Large-Language Models (LLM), or compilers, while dynamic
deobfuscation typically involves using memory dumps ob-
tained during program execution. An example of the manual
dynamic deobfuscation process for a program obfuscated with
a packer is as follows:

1) Use static analysis tools to identify program Entry Points
(EP);

2) Identify instructions in the packed program to transfer
control to the Original Entry Point (OEP);

3) Set a Breakpoint (BP) at an instruction identified by the
debugger and execute the program sequentially up to
that instruction;

4) Dump process memory to disk and rebuild the Import
Address Table (IAT);

5) Use the tool to scan process memory, then search for
IAT; and

6) Obtain and apply the list of import functions, after which
deobfuscation is complete

While manual dynamic unpacking of packers allows for
precise deobfuscation, it involves complex tasks such as iden-
tifying the EP and setting BPs, as well as the need for a
dynamic analysis environment. Considering these factors, the
deobfuscation of numerous programs is impractical. Research
has been conducted on static deobfuscation using LLMs and
compilers [1–8], as well as on dynamic deobfuscation and has
targeted executable files such as Portable Executable (PE) files
and codes such as JavaScript [9–11]. Additionally, researchers
have developed systems for deobfuscation and there are several
existing deobfuscation tools [12–14]. However, each system
or tool supports different obfuscation methods and input
formats, thus requiring transformation of the program into the
format compatible with each tool. In practice, adapting to the
usage methods, input formats, and construction environments
of various tools is not straightforward when deobfuscating
programs.

In this paper, we aim to automate a deobfuscation system
that encompasses these tools. Considering that most recent
malware targets Windows, we focus on PE files. We also
address the detection and deobfuscation of malicious files em-
bedded in JavaScript within HTML emails and web pages. The
target obfuscation methods include PE file packing, JavaScript
obfuscation, and XOR. XOR obfuscation is used because of its
reversibility and difficulty of decryption, making it a suitable
target for system-based deobfuscation. Our system employs a
virtual environment, using Docker for static deobfuscation and
VirtualBox for dynamic deobfuscation.

The structure of this paper is as follows. First, related
research is discussed in Section II, while Section III describes
the positioning of this study within the field. Section IV

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 10 –



presents the proposed system. Sections V and VI cover the
implementation of the proposed system and the results of
testing, respectively. Based on these, Section VII provides the
conclusion and future prospects.

II. RELATED WORK

In this paper, we propose an automated system for de-
obfuscating programs. This system integrates multiple tools
to achieve deobfuscation. In this section, we review existing
research on static and dynamic deobfuscation and discuss
previous work on deobfuscation systems. Finally, we position
our research within this context.

A. Related Work on Static Deobfuscation

Herrera et al. proposed Safe-Deobfs, a deobfuscation tool
for JavaScript [1]. This tool achieves deobfuscation through
static analysis based on compiler techniques. It performs con-
stant and value replacement, removal of redundant codes, func-
tion inlining, and string decoding. The input is a JavaScript
file, and deobfuscation is accomplished by optimizing the input
code. In addition, there have been studies on static deobfusca-
tion [2–8]. These applied reduction algorithms to obfuscated
programs in order to transform the semantics of the programs.
As a result, they reduce redundant codes, streamline control
flow, and replace constants and values, thereby deobfuscating
the program. These studies on static deobfuscation mainly use
algorithms based on LLMs and compilers.

B. Related Work on Dynamic Deobfuscation

Martignoni et al. achieved deobfuscation of packed pro-
grams by scanning memory pages for a certain period after
detecting dangerous system calls [9]. They defined dangerous
system calls as actions like creating or setting registry keys
and assumed the period until the next call as the boundary
of the unpacking process, thereby estimating the unpacking
activity. Tang et al. and Udepa et al. achieved deobfuscation
by first performing taint analysis through dynamic execution
of the program and then conducting static analysis based on
the utilized flows [10,11]. By combining dynamic execution
and static analysis in this way, it is possible to deobfuscate
without relying on patterns in the obfuscation methods.

C. Related Work on Deobfuscation Systems

Hajarnis et al. proposed a system that integrates static
deobfuscation using deobfuscation tools and the detection
of malicious JavaScript files [12]. The targeted obfuscations
included multiple packers for PE files and XOR. The system
achieved deobfuscation using unipacker and XORSearch. Choi
et al. proposed a comprehensive system for packing detection,
unpacking, and verification [13]. For detection, the system
sequentially checks the presence of the EP section and the
presence of signatures and then examines write attributes and
entropy. For deobfuscation, it uses static deobfuscation if an
unpacking library is provided, and dynamic deobfuscation if
not. The targeted obfuscation is for PE files, whereas the static
deobfuscation supports only UPX. Menguy et al. proposed

a search-based black-box deobfuscation tool [14], improving
the stability of the search method, as well as the success rate
and efficiency, compared to tools developed in prior research
[15]. Deobfuscation was achieved by transforming the input
functions into semantically equivalent code.

D. Related Work on Detection of Malicious Files in JavaScript

Fass et al. proposed a tool for detecting malicious JavaScript
files [17]. This tool identifies JavaScript using analysis based
on an abstract syntax tree and classifies malicious files by
extracting n-gram features.

III. POSITIONING OF THIS PAPER

In the existing research described in Section II-A, obfusca-
tion of JavaScript and PE files was addressed using compilers
and LLMs, achieving deobfuscation by transforming obfus-
cated code into semantically equivalent code. However, static
code transformation for programs is time-consuming, making
it impractical when considering deobfuscation of numerous
programs.

In Section II-B, deobfuscation was achieved by utilizing
the behavior observed during the dynamic execution of the
program. The advantage of using dynamic deobfuscation is
that it does not depend on specific patterns of obfuscation
methods.

In Section II-C, a deobfuscation system was realized by
integrating existing deobfuscation tools and detection tools. In
Hajarnis et al.’s research, a system integrating static deobfusca-
tion with unipacker, detection of malicious JavaScript files, and
XOR-based deobfuscation was constructed. However, the de-
obfuscation target is limited to packers supported by unipacker.
In addition, for JavaScript files, the existing research described
in Section II-D was utilized, providing for only malicious file
detection.

Choi et al. constructed a system encompassing multiple
detection methods, static and dynamic deobfuscation using
unpacking libraries, and verification. However, the supported
unpacking library is limited to UPX. While dynamic deobfus-
cation is also possible, making it widely applicable to various
obfuscation methods, it is limited to PE file obfuscation.

Menguy et al. constructed a black-box deobfuscation tool
to achieve static code transformation on functions. However,
since the input is a function, the analyst needs to handle
the processing themselves. The process of extracting each
function from the program is time-consuming and depends
on the accuracy of the tools and methods used, thus posing a
challenge.

Therefore, we construct a comprehensive system that in-
cludes XOR deobfuscation, detection and deobfuscation of
malicious JavaScript files, and both static and dynamic de-
obfuscation of PE files. Compared to the existing research
described in Section II-C, our system integrates various de-
obfuscation tools for different obfuscation methods, which is
the novel contribution of this paper. Furthermore, by using a
program as the input to the system and minimizing the need
for manual processing by the analyst, we make the system

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 11 –



user-friendly. By unifying the tools to accept programs as input
and enabling the deobfuscation of a wide range of obfuscation
techniques, we establish the utility of this study.

IV. PROPOSED SYSTEM

In this study, we propose an automated deobfuscation sys-
tem that integrates various tools, including a detection tool for
malicious JavaScript files, a deobfuscation tool for JavaScript,
a deobfuscation tool for XOR obfuscation, and both static and
dynamic deobfuscation tools for PE files. Table I lists the tools
used in this system.

TABLE I
LIST OF TOOLS USED

Tool URL of the Tools
JAST https://github.com/Aurore54F/JaSt

js-beautify https://github.com/beautifier/js-beautify
JStillery https://github.com/mindedsecurity/JStillery

XORSearch https://blog.didierstevens.com/programs/xorsearch
unipacker https://github.com/unipacker/unipacker

mal unpack https://github.com/hasherezade/mal unpack

Additionally, the workflow of the system is described as
follows, with an overview of the system illustrated in Figure
1.

1) About file type detection;
2) Processing for JavaScript files (JAST，js-tools);
3) Run XORSearch on PE files (XORSearch);
4) Processing for PE files (Detect Packer); and
5) Deobfuscate PE files (unipacker，mal unpack);

Fig. 1. Flowchart of the system.

The input to this system can be either a PE file or a JavaScript
file. The system automatically detects and deobfuscates ma-
licious files for the input file. It is assumed that the PE files
and JavaScript files inputted into the system are obfuscated.
The detailed procedures for each stage of the process will be
described in the following sections.

A. About File Type Detection

The deobfuscation system starts by placing the target files in
a folder and running a script. Since the processes for PE files
and JavaScript files are different, it is necessary to identify and
classify the format of the input files. For file format identifi-
cation, this system uses Magika, a file format identification
tool provided by Google, which utilizes an AI model that
has been shown to score higher than other identification tools
[18]. While general identification tools recognize the source
code of programs in various languages as text files, Magika
can classify them by language. The classified PE files and
JavaScript files are then processed accordingly.

B. Processing for JavaScript Files

For JavaScript files, the system performs both malicious file
detection and deobfuscation. The former is conducted using
JAST, a detection tool developed by Fass et al. For the latter,
commonly used JavaScript deobfuscation tools such as js-
beautify and JStillery are employed. The system inputs a folder
containing JavaScript files into JAST, which outputs a report
of the detection results for malicious files. For obfuscated files,
the system proceeds with deobfuscation using both js-beautify
and JStillery.

For unknown malicious files, JAST can be tuned and re-
configured to enable their classification. Since many malicious
JavaScript files are obfuscated to hide the program’s contents,
deobfuscation is essential. This approach automates the de-
tection of malicious JavaScript files and the deobfuscation of
JavaScript files, thereby enhancing the overall effectiveness of
the system.

C. Run XORSearch on PE Files

For PE files, the system performs deobfuscation of XOR
obfuscation and outputs the findings as a report. The tool used
for this purpose is XORSearch, which can perform a brute-
force search of the input file to extract keywords of interest.
Since attackers tend to conceal URLs within programs, the
default keyword for investigation in this system is “http”.
However, as the target keywords may vary depending on the
analyst, the system allows the modification of keywords via
options, enabling the investigation of any specified string.

D. Processing for PE Files

For PE files, the system detects obfuscation methods. De-
obfuscation for PE files involves using unipacker for static
deobfuscation and mal unpack for dynamic deobfuscation.
However, unipacker supports only a limited number of pack-
ers: ASPack, FSG, MEW, MPRESS, PEtite, and UPX. The
detection of these packers is achieved using the analysis
tool Detect It Easy (DIE). DIE can analyze the contents
of executable files and determine whether they are packed,
provided the packer is known. Since all packers supported by
unipacker are known packers, DIE enables the identification of
samples suitable for static deobfuscation by recognizing these
specific packers.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 12 –



E. Deobfuscate PE Files

We perform both static unpacking using unipacker and
dynamic unpacking using mal unpack on PE files. Based on
the results of the processing conducted in Section IV-D, if uni-
packer detects a corresponding packer, then static unpacking is
executed; if no packer is detected, then dynamic deobfuscation
using mal unpack is executed. The static analysis is performed
on Docker and, upon completion of the unpacking, the un-
packed executable file is output. Since the dynamic unpacking
is executed on VirtualBox, it is necessary to send the specimen
to be unpacked and, once the obfuscation removal for each
specimen is complete, the unpacked executable file is output.
This process enables the selection of specimens for static
unpacking and the automation of both static and dynamic
unpacking.

V. IMPLEMENTATION

In this section, we construct the release system based on the
content described in the previous section. In this system, the
processing of JavaScript files and PE files is virtualized using
Docker and the dynamic release of PE files is virtualized using
VirtualBox. The detailed flowchart of this system is shown in
Figure 2. By starting the script placed on the host machine, the
sample zip file placed on the host machine is extracted, and
each stage described in Section IV is automatically executed
by the script. First, PE files and JavaScript files are classified
using Magika, and if they are identified as the target file
format, they are stored in the respective data folders. Since
this system targets PE files and JavaScript files, files of
other formats are excluded at this point. Next, the processing
for JavaScript files is executed, with the detection of ma-
licious files by JAST and the deobfuscation by js-beautify
and JStillery being performed in sequence. The deobfuscation
of JavaScript files outputs the results of each tool, so the
processing for JavaScript files outputs three files: the malicious
file list by JAST and the deobfuscation results of each tool for
the JavaScript files. After the processing for JavaScript files
is completed, XORSearch is executed on the PE files and a
report of the strings obfuscated by XOR is generated. For
the deobfuscation of PE files, DIE is used to identify the
packer corresponding to unipacker, and static unpacking is
performed. The analysis results for each corresponding packer
are output with the packer’s name, and the decision to execute
static unpacking is based on these results. For samples not
supported by unipacker, dynamic unpacking is performed by
executing mal unpack. Since dynamic unpacking is performed
on VirtualBox, the virtual environment is started, dynamic
unpacking is executed after sending the sample; once the
unpacking is completed, the unpacked sample is sent, and the
virtual environment is stopped and restored. This process is
automated by the script. In addition, when automating dynamic
unpacking, it is necessary to consider cases where the sample
does not run in the virtual environment. This is addressed by
specifying a timeout duration with the mal unpack option.

This system automatically performs the unpacking for PE
files and the detection and deobfuscation for JavaScript files.

If the sample zip file does not contain the target files, then the
operations at each stage are omitted, improving the efficiency
of the system. The construction environment of this system is
shown below.

• Host OS: Ubuntu-22.04-amd64
– CPU: Intel Core i3-1115G4
– Memory: DDR4-3200 32 GB

• Docker: Ubuntu-22.04
• VBox: Windows10-1507

– Number of CPU Processors: 2 core
– Memory: 4 GB

VI. RESULTS AND DISCUSSION

In this section, we verify the usefulness of the system
described in Section V by inputting obfuscated samples and
executing the deobfuscation system. The input to this system
consists of obfuscated PE files or JavaScript files and the
output includes deobfuscated PE files, deobfuscated JavaScript
files, and a list of malicious JavaScript files detected. If
XOR obfuscation is present, then a list of the corresponding
locations is output. Additionally, PE files are evaluated using
static analysis results before and after deobfuscation.

A. Verification Details and Conditions

Here, we describe the verification and its conditions. The
samples used for verification are malicious JavaScript files,
obfuscated JavaScript files, and obfuscated PE files. The verifi-
cation for JavaScript uses JavaScript obfuscation tools such as
JavaScript Obfuscator and Closure Compiler. For obfuscated
PE files, we use samples obfuscated by both methods sup-
ported by unipacker and those not supported by unipacker. The
applied obfuscation methods include ASPack, FSG, MEW,
MPRESS, PEtite, UPX, Amber, EnigmaVB, PECompact, and
Yoda Protector. Except for UPX, the unpacking libraries
for these obfuscation methods are either commercial or do
not exist. Additionally, for the evaluation of deobfuscated
samples obtained from this system in this paper, PE files,
being executable files, are evaluated based on the results of
surface analysis and static analysis. In this paper, we use
Capa, a capability detection tool for executable files; Stella,
a tool that creates a list of readable strings by risk level of
attacks; and Ghidra, a reverse engineering tool, as evaluation
tools. This allows us to visualize and evaluate the changes
in internal information, readable strings, and code before and
after deobfuscation. The verification results of this system are
described below.

B. Detection of Malicious Files for JavaScrtipt

The detection results for malicious JavaScript files are
described below. Malicious and benign JavaScript files were
inputted into the system and the classification of malicious
files was verified. Since the detection of malicious files in this
system uses the verification tool from the existing research by
Fass et al., detailed verification results are omitted.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 13 –



Fig. 2. System implementation.

C. Deobfuscate JavaScript Files

In this section, JavaScript obfuscation was applied to simple
code using JavaScript obfuscation tools, JavaScript Obfus-
cator and Closure Compiler. The deobfuscation results for
JavaScript are shown below, with the code before deobfus-
cation in 1 and the code after deobfuscation in 2:

Code 1. JavaScript Code before Deobfuscation
1 ’use strict’;function hello(a){alert("

Hello, "+a)}hello("New user");

Code 2. JavaScript Code after Deobfuscation
1 ’use strict’;
2 function hello(a){
3 alert("Hello, "+a)
4 }
5 hello("New user");

D. Obfuscation with XOR

Some of the information obtained by applying XORSearch
in this system is as follows. The keyword “http” was used for
the XORSearch verification, and samples that did not include
the keyword in their readable strings were used as the target:

• http://crl.microsoft.com/XXX/MicCodSi
• http://www.microsoft.com/XXX/MicCodSigPCA 08
• http://www.microsoft.com/XXX/MicrosoftTimeSt
• http://crl.microsoft.com/XXX/microsoft

E. Static Deobfuscation of PE Files

The information obtained through the application of uni-
packer in this system is as follows. As mentioned earlier, we
use the results of static analysis before and after deobfuscation
for evaluation. The following are the analysis results obtained

using the executable capability detection tool, Capa, and the
surface analysis tool, Stella:

• Analysis by Capa before Static Deobfuscation
– no capabilities found

• Analysis by Capa after Static Deobfuscation
– no capabilities found

• Analysis by Stella before Static Deobfuscation
– File: CompareFileTim 4UserDe

• Analysis by Stella after Static Deobfuscation
– File: ComapareFileTime, ReadFile, WriteFile, Get-

PrivateProfileIntW, CreateFileA, ...
Additionally, the results of analysis using Ghidra for the
program after deobfuscation and the source code before ob-
fuscation are shown in Figure 3 and Figure 4, respectively.

F. Dynamic Deobfuscation of PE Files

The information obtained through the application of
mal unpack in this system includes the following. The evalua-
tion method is as previously described, and the analysis results
from Capa and Stella are shown below:

• Analysis by Capa before Dynamic Deobfuscation
– no capabilities found

• Analysis by Stella before Dynamic Deobfuscation
– Reg: null

• Analysis by Stella after Dynamic Deobfuscation
– Reg: RegCloseKey, RegOpenKeyExA, RegCre-

ateKeyW, RegDeleteValueW, ...
The analysis results by Capa after deobfuscation are presented
in Table II. Additionally, the analysis results by Ghidra are
shown in Figures 5 and 6, respectively.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 14 –



Fig. 3. Results of Ghidra’s analysis of the source code before obfuscation
with UPX.

Fig. 4. Result of analysis by Ghidra after static deobfuscation.

G. Regarding the Processing Time of This System

Table III shows the total processing time for deobfuscation
in this system. Here, the number of samples is varied as 5,
10, 50, and 100, and the processing time by the system is
measured. The breakdown of each sample set consists of 1
JavaScript file, 2 samples supported by unipacker, and 2 sam-
ples not supported by unipacker but supported by mal unpack.
The number of samples is increased without changing the
proportion of each type. The measurement interval is from the
moment the script execution starts to the moment it finishes.
Additionally, Table 2 shows the processing time for each tool
when the number of samples is set to 50. The measurement
interval here is from the moment each script starts execution to
the moment the script finishes. Processing of the sample zip
files and data transfer are not included in the measurement

TABLE II
ANALYSIS BY CAPA AFTER DYNAMIC DEOBFUSCATION

ATT&CK Tactic ATT&CK Technique
COLLECTION Clipboard Data T1115

Video Capture T1125
DEFENSE EVASION Hide Artifacts::Hidden Window T1564.003

Modify Registry T1112
DISCOVERY Account Discovery T1087

File and Directory Discovery T1083
Query Registry T1012

Fig. 5. Results of Ghidra’s analysis of the source code before obfuscation
with PECompact.

interval.

H. Discussion

Based on the verification results, we discuss the findings in
this section. Regarding the detection of malicious JavaScript
files, we have confirmed the classification by JAST. The
JavaScript code used for the deobfuscation verification in
this paper is simple. The deobfuscation tools js-beautify and
JStillery only applied indentation and code formatting, as
shown in Code 1 and Code 2. Additionally, deobfuscation
restoring the source code from obfuscation that converts the
code content to ASCII codes was not applied. Therefore,
the deobfuscation of JavaScript in this system is an act of
enhancing readability by inserting indentation and formatting
the code.

Regarding the static deobfuscation of PE files, this system
uses unipacker. For the verification of static deobfuscation,
samples obfuscated with packers supported by unipacker were
used. The static analysis results using Capa were not detected.
This is because unipacker’s static deobfuscation identified the
state as still being packed, causing the tool to malfunction. In
the surface analysis by Stella, comparison of the information

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 15 –



Fig. 6. Result of analysis by Ghidra after dynamic deobfuscation.

TABLE III
THE PROCESSING TIME OF THIS SYSTEM.

Number of Samples 1st Time(s) 2nd Time(s) 3rd Time(s)
5 424 416 427
10 851 851 849
50 4,240 4,285 4,241

100 8,479 8,495 8,435

obtained before and after static deobfuscation indicates that
the number of readable strings increased after deobfusca-
tion. Additionally, comparison of the main function of the
program after dynamic deobfuscation and the source code
before obfuscation shown in Figures 3 and 4 indicates that
the code flow is equivalent. From these observations, it can
be concluded that while static deobfuscation with unipacker
is possible, additional processing of the sample is necessary
after unipacker’s deobfuscation since it is identified as being
in a packed state. On the other hand, for surface analysis
aimed at obtaining surface information and static analysis
for reverse engineering, unipacker’s static deobfuscation is
effective for deobfuscation. Therefore, processing appropri-
ate to the purpose of deobfuscation is required. Regarding
the dynamic deobfuscation of PE files, this system uses
mal unpack. For the verification of dynamic deobfuscation,
samples obfuscated with methods that unipacker does not
support were used. The static analysis results using Capa
were detected after deobfuscation, whereas they were not
detected before deobfuscation. This indicates that dynamic
deobfuscation can correctly identify the sample as being in
an unpacked state after deobfuscation. In the surface analysis
by Stella, comparison of the information obtained before and
after dynamic deobfuscation clearly suggests that the number

TABLE IV
THE PROCESSING TIME OF THIS SYSTEM.

Tool 1st Time(s) 2nd Time(s) 3rd Time(s)
js-scirpts 3.492 4.167 4.389
unipacker 3,784.241 3,785.224 3,782.465

mal unpack 451.974 495.222 452.954

of readable strings increases after deobfuscation. Additionally,
comparison of the main function of the program after dynamic
deobfuscation and the source code before obfuscation shown
in Figures 5 and 6 indicates that the code flow is equivalent.
From these observations, it can be concluded that dynamic
deobfuscation with mal unpack is possible and can achieve a
level of deobfuscation equivalent to that of the source code.
The processing times for deobfuscation in this system can be
observed in Table III and Table IV. However, since a quantita-
tive evaluation of each processing time cannot be conducted,
these results should be regarded as merely indicative.

VII. CONCLUSION

In this paper, we proposed an automated system that encom-
passes the detection and deobfuscation of malicious JavaScript
files, deobfuscation of XOR-obfuscated data, and both static
and dynamic deobfuscation of PE files. For the detection of
malicious JavaScript files, regular updates of the training data
are necessary to handle unknown malicious files. Regarding
the deobfuscation of JavaScript, the tools used in this system
can handle deobfuscation techniques that remove indentation
or convert codes to redundant forms. However, they have dif-
ficulty deobfuscating techniques that convert codes to ASCII
codes. For the deobfuscation of PE files, the system achieves
both static and dynamic deobfuscation. However, with static
deobfuscation using unipacker, the deobfuscated samples are
often still identified as being packed, necessitating further
processing that does not affect static analysis.

Future challenges include the tools and processes used for
the deobfuscation of JavaScript and the handling of samples
after static deobfuscation using unipacker. In this study, Win-
dows 10-1507 was used for the dynamic deobfuscation envi-
ronment. However, since some malware depends on specific
software or versions within PE files, constructing environments
with multiple versions and software could increase the number
of samples amenable to dynamic deobfuscation. Furthermore,
the deobfuscation process and the quantitative evaluation of
the deobfuscation results produced by various tools have not
yet been conducted, making this a challenge for future work.
Additionally, as malware exists not only in PE files but also
in ELF files compatible with Linux, we also aim to address
obfuscation techniques for ELF files.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI Grant
Number 23H03396.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 16 –



REFERENCES

[1] A. Herrera,“Optimizing away javascript obfuscation,” in Proc. 20th
International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pp. 215-220, 2020.

[2] Y. Guillot, et al.,“Automatic binary deobfuscation,” Journal in Computer
Virology, vol. 6, pp. 261-276, 2010.

[3] R. T. Shirazi, et al.,“DoSE: Deobfuscation based on semantic equiva-
lence,” in Proc. 8th Software Security, Protection and Reverse Engineer-
ing Workshop (SSPREW-8), pp. 1-12, 2018.

[4] M. A. Lachaux, et al.,“DOBF: A deobfuscation pre-training objective
for programming languages,” in Proc. Advances in Neural Information
Processing Systems, vol. 34, pp. 14967-14979, 2021.

[5] B. Yadegari, et al.,“A generic approach to automatic deobfuscation of
executable code,” in Proc. Symposium on Security and Privacy, pp.674-
691, 2015.

[6] J. H. Suk, et al.,“SCORE: Source code optimization & reconstruction,”
in IEEE Access, vol. 8, pp. 129478-129496, 2020.

[7] P. Garba, et al.,“Software deobfuscation framework based on llvm,” in
Proc. 3rd ACM Workshop on Software Protection (SPRO), pp. 27-38,
2019.

[8] M. Talukder, et al.,“Analysis of obfuscated code with program slicing,”
in Proc. International Conference on Cyber Security and Protection of
Digital Services (Cyber Security), pp. 1-7, 2019.

[9] L. Martignoni, et al.,“OmniUnpack: Fast, generic, and safe unpacking
of malware,” in Proc. 23rd Annual Computer Security Applications
Conference (ACSAC), pp. 431-441, 2007.

[10] Z. Tang, et al.,“SEEAD: A semantic-based approach for automatic
binary code de-obfuscation,” in Proc. Trustcom/BigDataSE/ICESS, pp.
261-268, 2017.

[11] S. K. Udupa, et al.,“Deobfuscation: Reverse engineering obfuscated
code,” in Proc. 12th Working Conference on Reverse Engineering
(WCRE), p. 10, 2005.

[12] K. Hajarnis, et al.,“A Comprehensive solution for obfuscation detection
and removal based on comparative analysis of deobfuscation tools,”
in Proc. International Conference on Smart Generation Computing,
Communication and Networking (SMART GENCON), pp. 1-7, 2021.

[13] M. J. Choi, et al.,“All-in-one framework for detection, unpacking,
and verification for malware analysis,” Security and Communication
Networks, vol. 2019, article id 5278137, pp. 1-16, 2019.

[14] G. Menguy, et al.,“Search-based local black-box deobfuscation: under-
stand, improve and mitigate,” in Proc. ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 2513-2525, 2021.

[15] T. Blazytko, et al.,“Syntia: Synthesizing the semantics of obfuscated
code,” in Proc. 26th Usenix Security Symposium (USENIX Security),
pp. 643-659, 2017.

[16] D. Binkley, et al.,“ORBS: Language-independent program slicing,” in
Proc. 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pp. 109-120, 2014.

[17] A. Fass, et al.,“JAST: Fully syntactic detection of malicious (Obfuscated)
javascript,” in Proc. 15th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), pp.
303-325, 2018.

[18] Google, “Google Open Source Blog,” https://
opensource.googleblog.com/2024/02/magika-ai-powered-fast-and-
efficient-file-type-identification.html (Accessed 2024-05-20).

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 10–17, January 2025

– 17 –


