
Evaluation of Gaussian elimination using HLS for
fast public key generation in the Classic McEliece

Masashi Kihara
Graduate School of Science and

Engineering
National Defense Academy of

Japan
Yokosuka, Japan

em62047@nda.ac.jp

Keisuke Iwai
Department of Computer

Science
National Defense Academy of

Japan
Yokosuka, Japan
iwai@nda.ac.jp

Takashi Matsubara
Department of Computer

Science
National Defense Academy of

Japan
Yokosuka, Japan

matubara@nda.ac.jp

Takakazu Kurokawa
Department of Computer

Science
National Defense Academy of

Japan
Yokosuka, Japan
kuro@nda.ac.jp

Abstract—With the recent development of quantum computers
and massively parallel computing, the continued use of existing
cryptographic techniques is in jeopardy. For this reason,
standardization of Post-Quantum Cryptography (PQC) is
underway at the National Institute of Standards and Technology
(NIST) in the United States and other national standardization
organizations. While several cryptosystems have already been
finalized as part of the standard, there are still proposals under
discussion, including the Classic McEliece Cryptosystem, which is
the only code-based cipher remaining in the U.S. NIST proposal.
The characteristic feature of the Classic McEliece Cryptosystem is
its very large key size, with a maximum public key size of
approximately 1.4 MB. Generating a public key requires a very
large matrix calculation. Because of the large size of the matrix,
the time required for generation is also large, and even after
optimization, it is the most time-consuming process. In this paper,
we propose an FPGA implementation of the Gaussian elimination
method to accelerate the generation of public keys for the Classic
McEliece Cryptosystem using HLS. By implementing the method
on an FPGA for data centers suitable for HLS, the CPU load can
be reduced, and the public key can be obtained from the FPGA.
As a result of the implementation, the processing time was about
0.1 seconds per operation with the largest parameter size. Since
the speed was about the same as the calculation on a partially
optimized CPU, parallelization of this calculation can be expected
to result in faster key generation.

Keywords—FPGA, Classic McEliece, Post-Quantum
Cryptography, High Level Synthesize,

I. INTRODUCTION

Quantum resistant cryptography must be widely used before
quantum computers can be widely deployed. This is because it
will no longer be possible to establish secure communication
using existing cryptographic methods. Therefore, national
standards organizations are evaluating quantum cryptography
and trying to establish a standard. Especially in the
standardization at NIST in the U.S. [1], some quantum-resistant
ciphers have already been published as standard specifications
[2]. However, some ciphers still remain under evaluation and are
under discussion as PQC Round-4 [3].

Classic McEliece [4] is a type of key encapsulation
mechanism (KEM) and is the only remaining code-based
cryptosystem in PQC Round-4. Classic McEliece has by far the
largest key size. Classic McEliece's public key of approximately
1.4 MB is 1000 times larger than CRYSTALS-KYBER's public

key of 1.5 KB, when compared to the maximum parameters.
Considering that even the key length of CRYSTALS-KYBER is
larger than that of existing KEM, the size of Classic McEliece's
public key is enormous.

On the other hand, as advantages, the encryption and
decryption processes are fast, and the computational cost other
than key generation is lower than that of other proposed post
quantum cryptosystems [6]. In addition, it is a very stable
cryptosystem and can be said to be reliable even today, although
various attack methods have been proposed for more than 40
years since its proposal as a basic cryptosystem.

Classic McEliece takes a large amount of time to generate a
pair of keys due to the size of its public key. This has led to
proposals [7] for hardware implementations that focus on public
key generation, and proposals [8] to reduce the communication
overhead by caching the public key itself.

In this paper, we first evaluate the properties of Classic
McEliece in software implementation from an implementation
with reference code. Then, we evaluate the FPGA
implementation with the goal of speeding up key generation by
speeding up the Gaussian elimination method using FPGA with
HLS.

II. BACKGROUND OF CLASSIC MCELIECE

A. Classic McEliece Cryptosystem

Classic McEliece is a code-based KEM. Classic McEliece
generates a code from a generator matrix using the Goppa code,
and then mixes errors arbitrarily into the code, as shown in
Figure 1, so that only the target with a specific parity check
matrix can decode the code. This basic structure is based on the
McEliece code. The basic structure of this robust system has not
changed since 1978, when the McEliece cipher was proposed
[9].

Figure 1: Code-based cryptographic communication

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 22–26, January 2025

– 22 –

In the Classic McEliece algorithm [8] shown below 𝐵, most
of the computational work in key generation consists of
generating a public key, which is finally obtained from a random
GF(2) irreducible polynomial by Gaussian elimination. If the
Gaussian elimination reveals that the matrix is not reduced row-
echelon form, the key generation is considered to have failed,
and the key generation is repeated in the same way until the next
random input succeeds. Since the decision renders the previous
process useless, more processing time is required in the case of
key generation failure.

B. Key Generation Algorithm[8]

The following is a key generation algorithm

1. Generate a random degree 𝑡 irreducible polynomial 𝑔(𝑥)

2. Generate a random permutation (𝛼଴, 𝛼ଵ, … , 𝛼௡ିଵ) through
sorting random prefix.

3. Compute 𝑡 × 𝑛 matrix 𝐻(𝛼௝
௜ିଵ 𝑔(𝛼௝))ൗ calculated from

𝑔(𝑥) and (𝛼ଵ, … , 𝛼௡ିଵ).

4. Extend to 𝑚𝑡 × 𝑛 matrix 𝑇 by writing each element as
column 𝑚 bit vectors from 𝐻.

5. Gaussian elimination to this matrix 𝑇 into it systematic form
ൣ𝐼௠௧,𝑇෠൧. If this fails, return to step 1.

6. Output: Public key: 𝑇෠ , Secret key: (𝑔(𝑥), (𝛼଴, 𝛼ଵ, … , 𝛼௡ିଵ))

Table Ⅰ shows the parameters and key sizes for each
strength parameter set. Key sizes for Kyber-1024, the maximum
strength of CRYSTALS-KYBER, which has already become
the standard, are listed as well. Compared to the key sizes of
CRYSTALS-KYBER with similar strengths, Classic McEliece
has a very large key.

TABLE I. PARAMETER SETS OF CLASSIC MCELIECE AND KYBER

 parameter set m n t PK size
[byte]

SK size
[byte]

CT size
[byte]

mceliece348864 12 64 3488 261120 6492 96

mceliece460896 13 96 4608 524160 13608 156

mceliece6688128 13 128 6688 1044992 13932 208

mceliece6960119 13 119 6960 1047319 13948 194

mceliece8192128 13 128 8192 1357824 14120 208

Kyber-1024 - - - 1568 3168 1568

C. Related Work in Classic McEliece

A hardware implementation of Classic McEliece has already
been proposed in [10] and implemented for each parameter
respectively. In this implementation, Gaussian elimination is
performed using a dedicated operator. There is also an example
of SW/HW Co-design implementation [11]. This example
shows that the Gaussian elimination method accounts for most
of the computation time in public key generation, which takes
up most of the computation process. In the software
implementation, the Gaussian elimination method is shown to
take more time when using CPU extension instructions.

Even if we focus on public key generation, the size of the
hardware becomes large, and it is difficult to implement on a
small FPGA. Therefore, public key generation is often targeted
at servers and other computers with large computing resources.
However, there are also implementations[12] aiming at low
power consumption and memory saving, such as those for
embedded systems, and it would be difficult to adapt them to the
real world without improving their efficiency.

III. EVALUATING GAUSSIAN ELIMINATION IN C LANGAGE

A. Reference Key generation in CPU

The reference code submitted to NIST is a package written
in C. It contains the required packages except for Secure Hash
Algorithm 3 (SHA-3), which is contained in a directory broken
down by parameter. As a hash algorithm, Classic McEliece uses
as input the numbers obtained from SHAKE256, a function that
provides a hash of arbitrary length bits of SHA-3. There are two
implementations in the proposal [8], one using systematic form
and the other using partially semi-systematic form. The
implementation using partially semi-systematic form has been
shown to be faster in software implementation. The size of the
matrix required for public key generation in Classic McEliece is
𝑚𝑡 × 𝑛/8. The maximum parameter for this is 1644×1024.
Since each is held as a bitstring in char format, its capacity is 1.6
MB. Not many CPUs have a cache size that can accommodate
this. Matrix operations require many memory references, so they
are not suitable for CPU processing.

However, recent CPUs have extended instructions that can
perform SIMD operations more efficiently. These are called
vector instructions and can efficiently process multi-bit length
computations. Even consumer products, especially high-end
products, support these instructions, and reference code has been
submitted in the form of code that supports the AVX instructions.
Other additional implementations include extended instructions
such as SSE.

Another common optimization is the -O option of the GNU
Compiler Collection (GCC). This option performs optimizations
in stages from O0 to O3. The generally recommended level of
this option is O2. At option level O3, strong optimizations such
as loop transformations and memory access transformations are
applied. This option is a stronger optimization for calculations
with frequent memory accesses, such as matrix operations.

B. Valication & Evalution In CPU

In this study, the rate of the public key generation process is
first checked in a typical CPU environment. Since the Zynq
UltraScale was used in the previous study [11], the processor
used in the evaluation is the ARM processor for embedded
applications built into the Zynq. Here, the same verification is
performed on a CPU with general extended instructions. The
environment used for the verification is as follows

 Profile retrieval: Flame Graph[13]

 CPU: Intel i7-9700

 OS: Ubuntu 22.04 on WSL 2

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 22–26, January 2025

– 23 –

First, we measure the actual execution time for each
parameter set. The execution times for each parameter set are
shown in Table Ⅱ . These numbers are obtained from
“omp_get_wtime();”, a standard OpenMP function. Basically,
cryptographic processing time is often evaluated in terms of the
number of CPU cycles [6]. This is because it is difficult to
measure the real time of ordinary ciphers because they can be
processed so quickly. However, Classic McEliece takes a long
time to process, so we measured the real time.

The actual execution times for each parameter showed that
GCC's optimization options were strongly adapted to the Intel
Core i7-9700 processor. Compared to O0 with no options, the
O3 option reduced the execution time by a maximum of nearly
1/90th. In addition, the process is even faster when the extended
instruction AVX is used, and Gaussian elimination is performed
in tens of milliseconds.

TABLE II. ACTUAL EXECUTION TIME FOR EACH PARAMETER SETS

parameter sets AVX [s] O3 [s] O2 [s] O0 [s]

mceliece348864 0.001998 0.009063 0.186995 0.878694

mceliece460896 0.005808 0.032082 0.684219 3.569551

mceliece6688128 0.014522 0.098582 1.662650 7.937640

mceliece6960119 0.013467 0.087751 1.429807 6.993926

mceliece8192128 0.015053 0.102067 2.004971 9.399704

Profiles were obtained for each parameter set. The profiles
obtained from the smallest and largest parameter sets to observe
the changes are shown in Figure 2 below. This figures shows the
percentage with the horizontal axis at 100, and the functions
called are stacked on the vertical axis. In other words, the longer
a function takes to execute, the longer it is displayed horizontally.
It can be seen that the blue arrows are the functions that perform
public key generation and account for almost half of the total in
KEM.

Figure 2: Flame Graph with normal optimization of KEM

Next, we show the profiles for each parameter set when
optimized using the AVX extension instructions. As in the
previous section, the following figures show the results for the
smallest and largest parameter sets. As in Figure 2, the blue

arrows indicate the functions responsible for public key
generation, and although the overall execution time decreases
when the AVX extension instruction is used, public key
generation accounts for nearly 90% of the process.

Figure 3: Flame Graph using KEM with AVX

Gaussian elimination is included in the function “pk_gen”
and accounts for most of it. The percentage of Gaussian
elimination in “pk_gen” may decrease with the use of extended
instructions, since matrix computation is accelerated, but the
percentage of “pk_gen” is used for the purpose of comparison
with [11]. Table Ⅲ shows the execution times for the maximum
and minimum parameter sets for the extended instructions and
for the normal optimization. The obtained results show that most
of the time is spent on public key generation. In addition, at most
70% of the time in the normal GCC optimization
implementation was spent on public key generation in KEM.
From these results, it can be seen that studies focusing on
Gaussian elimination, as in [14], contribute to the speedup of
Classic McEliece. The results of this measurement show
different trends for the ARM-based Zynq UltraScale processor
and the Intel Core i7-9700. More time needs to be allocated to
public key generation on Zynq UltraScale's ARM processor than
on the vector instructions on the Intel CPU. Therefore, we found
that the ARM-based embedded CPU required more hardware
implementation than this regular consumer CPU.

TABLE III. PERCENTAGE OF EXECUTION TIME FOR PUBLIC KEY
GENERATION TO KEM

 Function pk_gen (including
Gaussian elimination)

Exec. time [%]

mceliece348864 + AVX 91.9

mceliece348864 48.4

mceliece8192128 + AVX 91.6

mceliece8192128 79.0

[11] Vectorized 97.6

[11] Baseline 81.8

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 22–26, January 2025

– 24 –

IV. HIGH LEVEL SYNTHESISE

A. HLS Implementation

In this study, we implemented a dedicated hardware in HLS
to efficiently process this huge matrix, which can be easily
ported from the reference implementation in C. In addition, the
implementation can be made more portable by using FPGAs
suitable for data centers. In addition, the implementation can be
made more portable by using FPGAs suitable for data centers.

For this evaluation, we used the Alveo U250 from
AMD/Xilinx. This FPGA, which is designed for server-side
applications, allows the corresponding FPGA to perform
processing through a software interface called XRT. Using this
runtime, processing can be passed from the CPU to an external
processor like OpenCL or CUDA. HLS, like a parallel computer,
converts the for instructions in the C language into
parallelization and pipelining by compiler directives. HLS also
performs optimization for high-speed processing by performing
appropriate memory transfers and buffer retention for the
specified parallelization or pipelining.

The versions of each library and runtime used are as follows:

 v++: v2023.1

 vitis_hls: v2023.1

 XRT: 2.16.204

 v++ is operated from the CUI in the same way as the GCC
compiler. Vitis_hls is a GUI-based software that performs High
Level Synthesis from C, C++, and OpenCL. Using these two
high level synthesis software, we performed logic synthesis and
evaluated the execution time. These operations can be thought
of as the equivalent of blocking and unrolling, which are often
performed in matrix calculations for high-performance
computing.

 Gaussian elimination can be roughly decomposed into two
loops: forward elimination and backward substitution. The
number of loops is predetermined by the parameters of Classic
McEliece. As shown in a previous study [11], we also optimize
access by storing the matrix columns together as a cache. The
frequency suitable for HLS can be maintained by unrolling for
the divided loops and parallelizing them. At this time, the array
is divided into an appropriate number of arrays for the number
of loops to achieve higher speed.

 This operation is as shown in Figure 4. Pipelining is
performed for each forward erase and backward assignment.
Blocking avoids excessive resource consumption by limiting
memory accesses. However, since pipelining is performed by
HLS, it is not clear whether the process is strictly overlaid as
shown in Figure 4.

Figure 4: Caching equations with HLS

B. Classic HLS Implemantation Result

Gaussian elimination was implemented for each parameter
set. The FPGA used was the Alveo u250 [15], an accelerator
card for data centers from AMD. The environment used for HLS
was v++ v2023.1, following the developer workflow for this
accelerator card.

The resource usage of the implementation is shown in Table
Ⅳ. Table Ⅴ shows a comparison with the HLS implementation
proposed in the previous study [11]. The implementation was
found to result in almost the same amount of percentage
resource usage compared to [11]. However, the AMD Alveo
u250 used in this experiment is an FPGA for data centers, and
the resource amount itself is higher than the Zynq UltraScale
series, which is marketed for embedded applications. Although
the previous study only mentions a percentage, the
implementation in this paper probably has increased resource
usage. Instead, it is expected that the computation is completed
earlier in actual runtime because of the extra resource usage. The
execution time was found to be approximately 0.1 second, even
for the largest parameter set.

In reality, this is expected to be worse in practice because of
the communication overhead, but this overhead can be absorbed
by parallelizing the module itself and communicating alternately.
In the previous study [11], this overhead is hidden by combining
the implemented module and CPU latency.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 22–26, January 2025

– 25 –

TABLE IV. RESOURCE UTILIZATION OF HLS IMPLEMENTATION:
300 [MHZ].

 BRAM DSP FF LUT

m3488 222 7 35330 87660

m4608 636 3 82405 186029

m6688 1028 0 95979 181552

m6960 700 37 199472 332825

m8192 1084 0 139421 310003

TABLE V. RESOURCE UTILIZATION COMPARISON WITH STUDY [11].

 Latency
(ns)

BRAM
(%)

FF
(%)

LUT
(%)

m3488 this work 2.45E+07 4 1 5

[11] - 20.4 3.7 6.5

m4608 this work 5.51E+07 11 2 10

[11] - 41.4 5.4 8.3

m6688 this work 1.84E+08 19 2 10

[11] - 63.3 8.2 14.4

m6960 this work 1.07E+08 13 5 19

[11] - 55.8 5.5 8.8

m8192 this work 9.52E+07 20 4 17

[11] - 64.8 7.4 9.8

V. CONCLUSIONS

We evaluated the Classic McEliece cipher using the
reference code submitted to NIST, and examined hardware that
performs Gaussian elimination at high speed to improve its
efficiency. As a result of implementation, we were able to
perform Gaussian elimination for a 1644 × 1024 matrix in
approximately 0.1 second with a maximum parameter n = 8192.
This is equivalent to GCC option -O3 on the CPUs compared in
this study. However, the CPU extension instructions were found
to be even faster than this.

The speedup of the Gaussian elimination method can be
utilized in future implementations, and in the case of SW/HW
cooperative implementation, it can be flexibly deployed, such as
using unorganized codes in some parts. In addition, if HLS is
used for the entire public key generation part of HW, speeding
up the Gaussian elimination method, which is a heavy process,
will directly lead to speeding up the process.

REFERENCES
[1] NIST, “Post-Quantum Cryptography Standardization,” [Online].

Available: https://csrc.nist.gov/pqc-standardization

[2] NIST, “NIST Releases First 3 Finalized Post-Quantum Encryption
Standards,” [Online]. Available: https://www.nist.gov/news-
events/news/2024/08/nist-releases-first-3-finalized-post-quantum-
encryption-standards

[3] NIST, “Round 4 Submissions,” [Online]. Available:
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-
submissions

[4] “Classic McEliece,” [Online]. Available: “https://classic.mceliece.org/”

[5] “CRYSTALS Cryptographic Suite for Algebraic Lattices,” [Online].
Available: https://pq-crystals.org/kyber/

[6] C. Paar, Bochum and T. Lange,” Eindhoven, eBACS: ECRYPT
Benchmarking of Cryptographic Systems,” ECRYPT 2024. [Online].
Available: https://bench.cr.yp.to/call-kem.html

[7] Y. Zhu et al., "Mckeycutter: A High-throughput Key Generator of Classic
McEliece on Hardware," 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1-6, 2023.

[8] Classic McEliece: conservative code-based cryptography: guide for
implementors, 23 October 2022. [Online]. Available:
https://classic.mceliece.org/mceliece-impl-20221023.pdf

[9] R.J.McEliece, “A public-key cryptosystem and algebraic coding theory,”
Coding Thv, vol. 4244, pp. 114-116, 1978.

[10] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben
Niederhagen, Jakub Szefer, and Wen Wang, “Complete and Improved
FPGA Implementation of Classic McEliece,”, IACR Transactions on
Cryptographic Hardware and Embedded Systems,pp. 71-113, 2022.

[11] V. Kostalabros, J. Ribes-González, O. Farràs, M. Moretó and C.
Hernandez, "HLS-Based HW/SW Co-Design of the Post-Quantum
Classic McEliece Cryptosystem," 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL), pp. 52-59, 2021.

[12] Johannes Roth, Evangelos Karatsiolis, and Juliane Krämer, “Classic
McEliece Implementation with Low Memory Footprint,” CARDIS 2020:
Smart Card Research and Advanced Applications, pp. 34-49, 2020.

[13] Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li,
Shaojun Wei, Leibo Liu, "Compact GF(2) systemizer and optimized
constant-time hardware sorters for Key Generation in Classic McEliece,"
https://eprint.iacr.org/2022/1277, 2022.

[14] Brendan Gregg, “Flame Graphs,” Brendan’s site,
“https://www.brendangregg.com/flamegraphs.html”

[15] ”Alveo™ U250 Data Center Accelerator Card,” 2024. [Online].
Available: https://www.amd.com/ja/products/accelerators/alveo/u250/a-
u250-a64g-pq-g.html

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 22–26, January 2025

– 26 –

