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Abstract—With the recent development of quantum computers 
and massively parallel computing, the continued use of existing 
cryptographic techniques is in jeopardy. For this reason, 
standardization of Post-Quantum Cryptography (PQC) is 
underway at the National Institute of Standards and Technology 
(NIST) in the United States and other national standardization 
organizations. While several cryptosystems have already been 
finalized as part of the standard, there are still proposals under 
discussion, including the Classic McEliece Cryptosystem, which is 
the only code-based cipher remaining in the U.S. NIST proposal. 
The characteristic feature of the Classic McEliece Cryptosystem is 
its very large key size, with a maximum public key size of 
approximately 1.4 MB.  Generating a public key requires a very 
large matrix calculation. Because of the large size of the matrix, 
the time required for generation is also large, and even after 
optimization, it is the most time-consuming process. In this paper, 
we propose an FPGA implementation of the Gaussian elimination 
method to accelerate the generation of public keys for the Classic 
McEliece Cryptosystem using HLS. By implementing the method 
on an FPGA for data centers suitable for HLS, the CPU load can 
be reduced, and the public key can be obtained from the FPGA. 
As a result of the implementation, the processing time was about 
0.1 seconds per operation with the largest parameter size. Since 
the speed was about the same as the calculation on a partially 
optimized CPU, parallelization of this calculation can be expected 
to result in faster key generation.    

Keywords—FPGA, Classic McEliece, Post-Quantum 
Cryptography, High Level Synthesize, 

I. INTRODUCTION  

Quantum resistant cryptography must be widely used before 
quantum computers can be widely deployed. This is because it 
will no longer be possible to establish secure communication 
using existing cryptographic methods. Therefore, national 
standards organizations are evaluating quantum cryptography 
and trying to establish a standard. Especially in the 
standardization at NIST in the U.S. [1], some quantum-resistant 
ciphers have already been published as standard specifications 
[2]. However, some ciphers still remain under evaluation and are 
under discussion as PQC Round-4 [3]. 

Classic McEliece [4] is a type of key encapsulation 
mechanism (KEM) and is the only remaining code-based 
cryptosystem in PQC Round-4. Classic McEliece has by far the 
largest key size. Classic McEliece's public key of approximately 
1.4 MB is 1000 times larger than CRYSTALS-KYBER's public 

key of 1.5 KB, when compared to the maximum parameters. 
Considering that even the key length of CRYSTALS-KYBER is 
larger than that of existing KEM, the size of Classic McEliece's 
public key is enormous. 

On the other hand, as advantages, the encryption and 
decryption processes are fast, and the computational cost other 
than key generation is lower than that of other proposed post 
quantum cryptosystems [6]. In addition, it is a very stable 
cryptosystem and can be said to be reliable even today, although 
various attack methods have been proposed for more than 40 
years since its proposal as a basic cryptosystem. 

Classic McEliece takes a large amount of time to generate a 
pair of keys due to the size of its public key. This has led to 
proposals [7] for hardware implementations that focus on public 
key generation, and proposals [8] to reduce the communication 
overhead by caching the public key itself. 

In this paper, we first evaluate the properties of Classic 
McEliece in software implementation from an implementation 
with reference code. Then, we evaluate the FPGA 
implementation with the goal of speeding up key generation by 
speeding up the Gaussian elimination method using FPGA with 
HLS. 

II. BACKGROUND OF CLASSIC MCELIECE 

A. Classic McEliece Cryptosystem 

Classic McEliece is a code-based KEM. Classic McEliece 
generates a code from a generator matrix using the Goppa code, 
and then mixes errors arbitrarily into the code, as shown in 
Figure 1, so that only the target with a specific parity check 
matrix can decode the code. This basic structure is based on the 
McEliece code. The basic structure of this robust system has not 
changed since 1978, when the McEliece cipher was proposed 
[9]. 

 

Figure 1: Code-based cryptographic communication 
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In the Classic McEliece algorithm [8] shown below 𝐵, most 
of the computational  work in key generation consists of 
generating a public key, which is finally obtained from a random 
GF(2) irreducible polynomial by Gaussian elimination. If the 
Gaussian elimination reveals that the matrix is not reduced row-
echelon form, the key generation is considered to have failed, 
and the key generation is repeated in the same way until the next 
random input succeeds. Since the decision renders the previous 
process useless, more processing time is required in the case of 
key generation failure. 

B. Key Generation Algorithm[8] 

The following is a key generation algorithm 
 
1. Generate a random degree 𝑡 irreducible polynomial 𝑔(𝑥) 

2. Generate a random permutation (𝛼଴, 𝛼ଵ, … , 𝛼௡ିଵ)  through 
sorting random prefix. 

3. Compute 𝑡 × 𝑛  matrix 𝐻(𝛼௝
௜ିଵ 𝑔(𝛼௝))ൗ  calculated from 

𝑔(𝑥) and (𝛼ଵ, … , 𝛼௡ିଵ). 

4. Extend to 𝑚𝑡 × 𝑛  matrix 𝑇  by writing each element as 
column 𝑚 bit vectors from 𝐻. 

5. Gaussian elimination to this matrix 𝑇 into it systematic form 
ൣ𝐼௠௧,𝑇෠൧. If this fails, return to step 1. 

6. Output: Public key: 𝑇෠ , Secret key: (𝑔(𝑥), (𝛼଴, 𝛼ଵ, … , 𝛼௡ିଵ))  

Table Ⅰ  shows the parameters and key sizes for each 
strength parameter set. Key sizes for Kyber-1024, the maximum 
strength of CRYSTALS-KYBER, which has already become 
the standard, are listed as well. Compared to the key sizes of 
CRYSTALS-KYBER with similar strengths, Classic McEliece 
has a very large key. 

TABLE I.  PARAMETER SETS OF CLASSIC MCELIECE AND KYBER 

 parameter set m n t PK size 
[byte] 

SK size 
[byte] 

CT size 
[byte] 

mceliece348864 12 64 3488 261120 6492 96 

mceliece460896 13 96 4608 524160 13608 156 

mceliece6688128 13 128 6688 1044992 13932 208 

mceliece6960119 13 119 6960 1047319 13948 194 

mceliece8192128 13 128 8192 1357824 14120 208 

Kyber-1024 - - - 1568 3168 1568 

 

C. Related Work in Classic McEliece 

A hardware implementation of Classic McEliece has already 
been proposed in [10] and implemented for each parameter 
respectively. In this implementation, Gaussian elimination is 
performed using a dedicated operator. There is also an example 
of SW/HW Co-design implementation [11]. This example 
shows that the Gaussian elimination method accounts for most 
of the computation time in public key generation, which takes 
up most of the computation process. In the software 
implementation, the Gaussian elimination method is shown to 
take more time when using CPU extension instructions. 

Even if we focus on public key generation, the size of the 
hardware becomes large, and it is difficult to implement on a 
small FPGA. Therefore, public key generation is often targeted 
at servers and other computers with large computing resources. 
However, there are also implementations[12] aiming at low 
power consumption and memory saving, such as those for 
embedded systems, and it would be difficult to adapt them to the 
real world without improving their efficiency. 

III.  EVALUATING GAUSSIAN ELIMINATION IN C LANGAGE 

A. Reference Key generation in CPU 

The reference code submitted to NIST is a package written 
in C. It contains the required packages except for Secure Hash 
Algorithm 3 (SHA-3), which is contained in a directory broken 
down by parameter. As a hash algorithm, Classic McEliece uses 
as input the numbers obtained from SHAKE256, a function that 
provides a hash of arbitrary length bits of SHA-3. There are two 
implementations in the proposal [8], one using systematic form 
and the other using partially semi-systematic form. The 
implementation using partially semi-systematic form has been 
shown to be faster in software implementation. The size of the 
matrix required for public key generation in Classic McEliece is 
𝑚𝑡 × 𝑛/8. The maximum parameter for this is 1644×1024. 
Since each is held as a bitstring in char format, its capacity is 1.6 
MB. Not many CPUs have a cache size that can accommodate 
this. Matrix operations require many memory references, so they 
are not suitable for CPU processing. 

However, recent CPUs have extended instructions that can 
perform SIMD operations more efficiently. These are called 
vector instructions and can efficiently process multi-bit length 
computations. Even consumer products, especially high-end 
products, support these instructions, and reference code has been 
submitted in the form of code that supports the AVX instructions. 
Other additional implementations include extended instructions 
such as SSE. 

Another common optimization is the -O option of the GNU 
Compiler Collection (GCC). This option performs optimizations 
in stages from O0 to O3. The generally recommended level of 
this option is O2. At option level O3, strong optimizations such 
as loop transformations and memory access transformations are 
applied. This option is a stronger optimization for calculations 
with frequent memory accesses, such as matrix operations. 

B. Valication & Evalution In CPU 

In this study, the rate of the public key generation process is 
first checked in a typical CPU environment. Since the Zynq 
UltraScale was used in the previous study [11], the processor 
used in the evaluation is the ARM processor for embedded 
applications built into the Zynq. Here, the same verification is 
performed on a CPU with general extended instructions. The 
environment used for the verification is as follows 

  Profile retrieval:  Flame Graph[13] 

  CPU:   Intel i7-9700 

  OS:   Ubuntu 22.04 on WSL 2 
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First, we measure the actual execution time for each 
parameter set. The execution times for each parameter set are 
shown in Table Ⅱ . These numbers are obtained from 
“omp_get_wtime();”, a standard OpenMP function. Basically, 
cryptographic processing time is often evaluated in terms of the 
number of CPU cycles [6]. This is because it is difficult to 
measure the real time of ordinary ciphers because they can be 
processed so quickly. However, Classic McEliece takes a long 
time to process, so we measured the real time. 

The actual execution times for each parameter showed that 
GCC's optimization options were strongly adapted to the Intel 
Core i7-9700 processor. Compared to O0 with no options, the 
O3 option reduced the execution time by a maximum of nearly 
1/90th. In addition, the process is even faster when the extended 
instruction AVX is used, and Gaussian elimination is performed 
in tens of milliseconds. 

TABLE II.  ACTUAL EXECUTION TIME FOR EACH PARAMETER SETS 

parameter sets AVX [s] O3 [s] O2 [s] O0 [s] 

mceliece348864 0.001998 0.009063 0.186995 0.878694 

mceliece460896 0.005808 0.032082 0.684219 3.569551 

mceliece6688128 0.014522 0.098582 1.662650 7.937640 

mceliece6960119 0.013467 0.087751 1.429807 6.993926 

mceliece8192128 0.015053 0.102067 2.004971 9.399704 

 

Profiles were obtained for each parameter set. The profiles 
obtained from the smallest and largest parameter sets to observe 
the changes are shown in Figure 2 below. This figures shows the 
percentage with the horizontal axis at 100, and the functions 
called are stacked on the vertical axis. In other words, the longer 
a function takes to execute, the longer it is displayed horizontally. 
It can be seen that the blue arrows are the functions that perform 
public key generation and account for almost half of the total in 
KEM. 

 

 

Figure 2: Flame Graph with normal optimization of KEM 

 

Next, we show the profiles for each parameter set when 
optimized using the AVX extension instructions. As in the 
previous section, the following figures show the results for the 
smallest and largest parameter sets. As in Figure 2, the blue 

arrows indicate the functions responsible for public key 
generation, and although the overall execution time decreases 
when the AVX extension instruction is used, public key 
generation accounts for nearly 90% of the process. 

 

 

Figure 3: Flame Graph using KEM with AVX 

 

Gaussian elimination is included in the function “pk_gen” 
and accounts for most of it. The percentage of Gaussian 
elimination in “pk_gen” may decrease with the use of extended 
instructions, since matrix computation is accelerated, but the 
percentage of “pk_gen” is used for the purpose of comparison 
with [11]. Table Ⅲ shows the execution times for the maximum 
and minimum parameter sets for the extended instructions and 
for the normal optimization. The obtained results show that most 
of the time is spent on public key generation. In addition, at most 
70% of the time in the normal GCC optimization 
implementation was spent on public key generation in KEM. 
From these results, it can be seen that studies focusing on 
Gaussian elimination, as in [14], contribute to the speedup of 
Classic McEliece. The results of this measurement show 
different trends for the ARM-based Zynq UltraScale processor 
and the Intel Core i7-9700. More time needs to be allocated to 
public key generation on Zynq UltraScale's ARM processor than 
on the vector instructions on the Intel CPU.  Therefore, we found 
that the ARM-based embedded CPU required more hardware 
implementation than this regular consumer CPU. 

TABLE III.  PERCENTAGE OF EXECUTION TIME FOR PUBLIC KEY 
GENERATION TO KEM 

 Function pk_gen (including 
Gaussian elimination) 

Exec. time [%] 

mceliece348864 + AVX 91.9  

mceliece348864 48.4  

mceliece8192128 + AVX 91.6  

mceliece8192128 79.0  

[11] Vectorized 97.6  

[11] Baseline 81.8  
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IV. HIGH LEVEL SYNTHESISE  

A. HLS Implementation 

In this study, we implemented a dedicated hardware in HLS 
to efficiently process this huge matrix, which can be easily 
ported from the reference implementation in C. In addition, the 
implementation can be made more portable by using FPGAs 
suitable for data centers. In addition, the implementation can be 
made more portable by using FPGAs suitable for data centers. 

For this evaluation, we used the Alveo U250 from 
AMD/Xilinx. This FPGA, which is designed for server-side 
applications, allows the corresponding FPGA to perform 
processing through a software interface called XRT. Using this 
runtime, processing can be passed from the CPU to an external 
processor like OpenCL or CUDA. HLS, like a parallel computer, 
converts the for instructions in the C language into 
parallelization and pipelining by compiler directives. HLS also 
performs optimization for high-speed processing by performing 
appropriate memory transfers and buffer retention for the 
specified parallelization or pipelining. 

The versions of each library and runtime used are as follows: 

 v++:  v2023.1 

 vitis_hls: v2023.1 

 XRT:  2.16.204 

 v++ is operated from the CUI in the same way as the GCC 
compiler. Vitis_hls is a GUI-based software that performs High 
Level Synthesis from C, C++, and OpenCL. Using these two 
high level synthesis software, we performed logic synthesis and 
evaluated the execution time. These operations can be thought 
of as the equivalent of blocking and unrolling, which are often 
performed in matrix calculations for high-performance 
computing. 

 Gaussian elimination can be roughly decomposed into two 
loops: forward elimination and backward substitution. The 
number of loops is predetermined by the parameters of Classic 
McEliece. As shown in a previous study [11], we also optimize 
access by storing the matrix columns together as a cache. The 
frequency suitable for HLS can be maintained by unrolling for 
the divided loops and parallelizing them. At this time, the array 
is divided into an appropriate number of arrays for the number 
of loops to achieve higher speed. 

 This operation is as shown in Figure 4. Pipelining is 
performed for each forward erase and backward assignment. 
Blocking avoids excessive resource consumption by limiting 
memory accesses. However, since pipelining is performed by 
HLS, it is not clear whether the process is strictly overlaid as 
shown in Figure 4. 

 

Figure 4: Caching equations with HLS 

 

B. Classic HLS Implemantation Result 

Gaussian elimination was implemented for each parameter 
set. The FPGA used was the Alveo u250 [15], an accelerator 
card for data centers from AMD. The environment used for HLS 
was v++ v2023.1, following the developer workflow for this 
accelerator card. 

The resource usage of the implementation is shown in Table 
Ⅳ. Table Ⅴ shows a comparison with the HLS implementation 
proposed in the previous study [11]. The implementation was 
found to result in almost the same amount of percentage 
resource usage compared to [11]. However, the AMD Alveo 
u250 used in this experiment is an FPGA for data centers, and 
the resource amount itself is higher than the Zynq UltraScale 
series, which is marketed for embedded applications. Although 
the previous study only mentions a percentage, the 
implementation in this paper probably has increased resource 
usage. Instead, it is expected that the computation is completed 
earlier in actual runtime because of the extra resource usage. The 
execution time was found to be approximately 0.1 second, even 
for the largest parameter set. 

In reality, this is expected to be worse in practice because of 
the communication overhead, but this overhead can be absorbed 
by parallelizing the module itself and communicating alternately. 
In the previous study [11], this overhead is hidden by combining 
the implemented module and CPU latency. 
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TABLE IV.  RESOURCE UTILIZATION OF HLS IMPLEMENTATION: 
300 [MHZ]. 

  BRAM DSP FF LUT 

m3488 222 7 35330 87660 

m4608 636 3 82405 186029 

m6688 1028 0 95979 181552 

m6960 700 37 199472 332825 

m8192 1084 0 139421 310003 

TABLE V.  RESOURCE UTILIZATION COMPARISON WITH STUDY [11]. 

 Latency 
(ns) 

BRAM 
(%) 

FF 
(%) 

LUT 
(%) 

m3488 this work 2.45E+07 4 1 5 

[11] - 20.4 3.7 6.5 

m4608 this work 5.51E+07 11 2 10 

[11] - 41.4 5.4 8.3 

m6688 this work 1.84E+08 19 2 10 

[11] - 63.3 8.2 14.4 

m6960 this work 1.07E+08 13 5 19 

[11] - 55.8 5.5 8.8 

m8192 this work 9.52E+07 20 4 17 

[11] - 64.8 7.4 9.8 

V. CONCLUSIONS 

We evaluated the Classic McEliece cipher using the 
reference code submitted to NIST, and examined hardware that 
performs Gaussian elimination at high speed to improve its 
efficiency. As a result of implementation, we were able to 
perform Gaussian elimination for a 1644 × 1024 matrix in   
approximately 0.1 second with a maximum parameter n = 8192. 
This is equivalent to GCC option -O3 on the CPUs compared in 
this study. However, the CPU extension instructions were found 
to be even faster than this. 

The speedup of the Gaussian elimination method can be 
utilized in future implementations, and in the case of SW/HW 
cooperative implementation, it can be flexibly deployed, such as 
using unorganized codes in some parts. In addition, if HLS is 
used for the entire public key generation part of HW, speeding 
up the Gaussian elimination method, which is a heavy process, 
will directly lead to speeding up the process. 
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