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Abstract—Attribute-based credential (ABC) systems allow a
user to anonymously prove attributes of the user to a verifier.
In advance, the user is issued a credential of the attributes from
an issuer. The user can select disclosed attributes, and prove the
possession of the attributes without revealing other unnecessary
attributes. However, the issuer’s public key is required in the
verification of the attribute proof, and thus the verifier can
know who is the issuer issuing the credential. An issuer-hiding
ABC system was proposed, where the issuer can be hidden in
the attribute proof, and the issuer’s attributes can be proved.
Thus, the verifier can verify the anonymous issuer flexibly based
on the issuer’s attributes. In this paper, we propose an issuer-
hiding ABC system by combining the previous system and
an accumulator. In the proposed system, CNF formulas with
negations can be used as the attribute proof. Since the attributes
of the user and the issuer are accumulated, the constant proof
size and verification time are achieved. We show the practicality
by an implementation on a PC.

Index Terms—attribute-based credential (ABC), issuer-hiding,
pairing, accumulator.

I. INTRODUCTION

An attribute-based credential (ABC) system that is an exten-
sion of anonymous credential system [3], [4] allows a user to
anonymously prove attributes of the user (e.g., age, name, and
affiliation) to a verifier. In advance, the user needs to obtain the
credential of the attributes from an issuer. The user can select
disclosed attributes, and prove the possession of the attributes
without revealing other unnecessary attributes.

A problem of the conventional ABC systems is that the
public key of the issuer is required in the verification of the
attribute presentation proof, and thus the verifier can know
who is the issuer issuing the credential. If the attributes of the
user are relevant to the issuer, the verifier can presume the user
information through the public key of the issuer (i.e., who is
the issuer). For example, when the issuer is a university, the
verifier can know that the user belongs to the university.

As a solution of this problem, an issuer-hiding ABC
system was proposed [1]. In this system, each verifier defines
a set of accepted issuers, and sends users signatures of the
issuers’ public keys. The public key of the issuer issuing the
proved credential can be concealed in the attribute presentation
proof by a zero-knowledge proof on the signature, while it is
ensured that the issuer is included in the set of the accepted
issuers. Thus, the above-mentioned problem that the issuer’s
information is revealed is solved.

In [6], an extended issuer-hiding ABC system was proposed,

where the issuer’s attributes can be proved, in addition to the
user’s attributes. For example, suppose that an issuer is ranked
in the top 100 in a certain industry. The user can selectively
disclose the attributes that indicate that the issuer has the“Top
100” attributes in “a certain industry” and keep the rest
of the attributes secret. In this system, each verifier defines
a set of accepted issuers with the attributes of the issuers,
and sends users signatures, called policy signatures, for the
set. The user can prove selected attributes of the user and
the issuer. Thus, the verifier can verify the anonymous issuer
flexibly based on the issuer’s attributes. In the previous issuer-
hiding ABC systems [1], [6], only the selective disclosure
is available. However, in conventional ABC systems, more
complex relations on attributes can be proved. In [7], by using
an accumulator to verify a CNF (Conjunctive Normal Form)
formula with negations, an ABC system was constructed,
where a user can prove such a CNF formula on attributes.
For example, consider the authentication to verify the absence
of the specified attribute for the evaluation of the organization
of the attribute. The ABC system can address such an authen-
tication, in addition to the authentications of AND and OR
relations on attributes.

In this paper, we propose an issuer-hiding ABC system
by combining the previous system [6] and the accumulator
[7]. In the previous system [6], Groth’s structure-preserving
signature [5] is used as a credential and a policy signature,
and the verification can be proved by a Signature based on
Proof of Knowledge (SPK), where disclosed attributes are
public values and hidden attributes are secret values. In the
proposed system, the accumulator [7] to verify CNF formulas
is used as the attribute proof, and attributes of the user and
the issuer are accumulated. In the user’s attribute presentation
protocol, SPK-based attribute proofs for the verification of
accumulators are performed, where values for the accumulator
verification are blinded. The verification relations do not
depend on the numbers of the attributes of the user and the
issuer and the CNF formula size, and the constant proof size
and verification cost are achieved. We show the practicality
by an implementation on a PC.

II. PRELIMINARIES

A. Bilinear Groups

In this paper, we use bilinear groups with a bilinear map.
Let G1, G2, and GT be cyclic groups of the same prime order
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p. Let G and G̃ be generators of G1 and G2 respectively.
The bilinear map e : G1 × G2 → GT satisfies the following
bilinearity and non-degeneracy.

• bilinearity: For any P ∈ G1, Q ∈ G2, and a, b ∈ Zp,
e(P a, Qb) = e(P,Q)ab.

• non-degeneracy: e(G, G̃) is not the identity element in
GT .

The above bilinear map can be realized by a pairing on elliptic
curves.

B. Assumption

The security of our system is based on n-DHE (DH Expo-
nent) assumption [2] on the asymmetric type of bilinear map.
Definition 1 (n-DHE assumption). For any PPT algorithm A,
the probability

Pr

[
A

(
G,Ga, . . . , Gan

, Gan+2

, . . . , Ga2n

,

G̃, G̃a, . . . , G̃an

, G̃an+2

, . . . , G̃a2n

)
= G̃an+1

]

is negligible, where a $←− Zp.

C. Signatures Based on Proofs of Knowledge (SPKs)

We adopt signatuers based on proofs of knowledge (SPKs).
A zero-knowledge proof of knowledge is an interactive pro-
tocol between a prover P and a verifier V , where P proves
secrets satisfying certain relations without revealing the se-
crets. In this paper, we use proofs of knowledge for discrete
logarithms. The proof of knowledge can be transformed to the
corresponding non-interactive SPK via Fiat-Shamir heuristic
by applying a hash fanction to the random challenge and a
signed message.

D. Structure-Preserving Signatures (Groth Signatures)

In this paper, we utilize Groth signatures [5]. Groth signa-
tures are randomizable structure-preserving signatures to sign
multiple group elements, and the verification on the bilinear
map can be proved using the SPKs. In this scheme, there are
two variants: Groth1 signs G1-elements and the public key
is a G2-element. Also, Groth2 signs G2-elements and the
public key is a G1-element. The algorithms of Groth1 for n
messages are as follows.

• Groth1.ParGen(1λ): Generate a bilinear group param-
eters (p,G1,G2,GT , e, G, G̃) with p ≥ 2λ. Set public
parameters pp = (p,G1,G2,GT , e, G, G̃, {Yi}ni=1) with
random elements Yi

$←− G1 for all i ∈ [1, n].
• Groth1.KGen(pp): Randomly select sk $←− Zp and

compute pk = G̃sk. Output secret key and public key
(sk, pk).

• Groth1.Sign(pp, sk, {Mi}ni=1): Calculate a Groth1

signature on the messages {Mi}ni=1 as the credential σ =
(R̃, S, {Ti}ni=1) = (G̃r, (Y ·Gsk)1/γ , {(Y sk

i ·Mi)
1/γ}ni=1)

for γ $←− Z∗
p.

• Groth1.Rand(pp, σ): Given Groth1 signature σ =
(R̃, S, {Ti}ni=1), and compute and output σ′ =

(R̃γ′
, S1/γ′

, {T 1/γ′

i }ni=1) for γ′ $←− Z∗
p.

• Groth1.Verify(pp, pk, σ, {Mi}ni=1): Given σ = (R̃, S,
{Ti}ni=1), verify the validity by e(S, R̃) = e(Y, G̃) ·
e(G, pk) and e(Ti, R̃) = e(Yi, pk) · e(Mi, G̃) for 1 ≤
i ≤ n.

Groth2 is obtained by switching the roles of G1-elements
and G2-elements.
This scheme is EUF-CMA secure in the generic group model
[5].

E. Accumulator to Verify CNF Formulas with Negations

In this paper, we use a pairing-based accumulator. In the
accumulator, a set of elements is accumulated to a single value
called an accumulator, and one can prove that an element
is included in the set. In [7], an extended accumulator was
proposed, where a CNF formula with negations can be verified.
Consider a CNF formula Ψ = ∧l ∨j ălj where ălj is a literal
of a non-negated attribute alj or a negated attribute ¬alj . Let
V +
l (resp. V −

l ) be a set of alj’s (¬alj’s). Let U be a set of
attributes. Then, the formula Ψ is accumulated, and it can be
verified that Ψ is satisfied by U . Each attribute is an index in
set of {1, . . . , n}, and U, V +

l , V
−
l are subsets of {1, . . . , n}.

When U ∩ V +
l ̸= ∅ or U ∩ V −

l ̸= V −
l for all 1 ≤ l ≤ L, a

user with the attributes of U owns an attribute in V +
l or does

not own an attribute in V −
l for all 1 ≤ l ≤ L, i.e., the CNF

formula Ψ is satisfied. The algorithms are as follows.
• AccSetup(1λ, L, {ηl}1≤l≤L) : Given security

parameter λ, the number L of clauses of CNF
formulas, and ηl as the maximum value of |V +

l ∪ V
−
l |

for all 1 ≤ l ≤ L. Generate bilinear group
parameters (p,G1,G2,GT , e, G, G̃) with p ≥ 2λ.
Set c1 = 1, cl = (ηl−1 + 1) · cl−1 (2 ≤ l ≤ L),
and C = (c1, . . . , cL). Choose γ

$←− Zp and compute
Gi = Gγi

for all 1 ≤ i ≤ 2n except i = n + 1
(resp. G̃i = G̃γi

for the same condition), and
z = e(G, G̃)γ

n+1

. Output public parameters pp =
(C, p,G1,G2,GT , e, G, {Gi}2ni=1,i ̸=n+1, G̃, {G̃i}2ni=1,i ̸=n+1

, z).
• AccGen(pp,V) : For 1 ≤ l ≤ L, V +

l ⊆ {1, . . . , n} is
the set of non-negated attributes in the l-th OR clause,
V −
l ⊆ {1, . . . , n} is the set of negated attributes, and
V = (V +

1 , V
−
1 , . . . , V

+
L , V

−
L ). Calculate an accumulator

accV as follows.

accV =
∏

1≤l≤L

(
∏

j∈V +
l

G̃n+1−j)
cl(
∏

j∈V −
l

G̃n+1−j)
−cl

• AccWitGen(pp,V, U) : U ⊆ {1, . . . , n} is the set of
attributes. Calculate the witness W as follows.

W =
∏
i∈U

∏
1≤l≤L

(

j ̸=i∏
j∈V +

l

G̃n+1−j+i)
cl(

j ̸=i∏
j∈V −

l

G̃n+1−j+i)
−cl

Output the witness W , and δl = |U ∩ V +
l | − |U ∩ V

−
l |

for all 1 ≤ l ≤ L as auxiliary parameters.
• AccVerify(pp,V, accV , U,W, {δl}1≤l≤L) : Verify U ∩
V +
l ̸= ∅ or U ∩ V −

l ̸= V −
l for all 1 ≤ l ≤ L as follows.
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Set u = δ1c1 + . . . + δLcL. Accept if the following
relations hold.

e(
∏

i∈U Gi, accV)

e(G,W )
= zu, and

1 ≤ δl + |V −
l | ≤ ηl for all 1 ≤ l ≤ L

The following security of the accumulator is proved in [7].
Theorem 1. Under n-DHE assumption, given the public
parameters, any PPT adversary cannot output U, V =
{V +

l , V
−
l }1≤l≤L, W, and {δl}1≤l≤L which satisfy the follow-

ing with a non-negligible probability.
• For accV correctly computed from V , AccVerify ac-

cepts V, accV , U, W, and {δl}1≤l≤L.
• For some l, U ∩ V +

l = ∅ and U ∩ V −
l = V −

l .

III. PREVIOUS ISSUER-HIDING ABC SYSTEM

We review the previous systems [1], [6] of issuer-hiding
ABC systems. In the previous system [1], a user obtains a
credential on the user’s attributes by an issuer, which is a
Groth signature (Groth1) [5] on the attributes where the
attributes is accumulated to one group element as Π1≤i≤LH

ai
i

for public parameter Hi and the i-th attribute ai. On the other
hand, as a policy signature, a verifier sends a Groth signature
(Groth2) on a public key of each accepted issuer. The public
key is a public key of Groth1, i.e., G2-element, and thus
Groth2 can sign it as a message. In the presentation of a
credential, by a zero-knowledge proof on Groth signatures,
a user proves that the verifications of the credential and the
policy signature, where the public key of the credential is
signed by the policy signature, and the disclosed attributes are
signed by the credential. In the extended issuer-hiding ABC
system [6], issuer’s attribute verification is added. In addition
to the issuer public key, the attributes are signed in the policy
signature, where the attributes are accumulated as well as the
user’s attributes. In the attribute presentation proof, selected
attributes are proved in the similar way to [1].

IV. MODEL

We show the model of our issuer-hiding ABC system.

A. Syntax

The algorithms of our issuer-hiding ABC system are as
follows.

• ParGen(1λ, L, n, {ηl}1≤l≤L) : Given a security param-
eter 1λ, L as the number of clauses of CNF formulas,
n as the total number of attributes, and ηl as the upper
bound of |V +

l ∪ V
−
l | for all 1 ≤ l ≤ L, it outputs public

parameter pp.
• IKGen(pp) : Given the public parameter pp, it outputs

an issuer’s secret and public key (isk, ipk).
• UKGen(pp) : Given the public parameter pp, it outputs

an user’s secret and public key (usk, upk).
• Issue(pp, isk, U, upk) : Given the issuer’s secret key
isk, the set U ⊆ {1, . . . , n} of a user’s attributes, and
the user’s public key upk, it outputs a credential cred on
the attributes and upk.

• VfCred(pp, cred, ipk, U, upk) : Given the credential
cred, the issuer’s public key ipk, the set U of the user’s
attributes, and the user’s public key upk, it outputs the
validity of the credential.

• PresPolicy(pp, {(ipkj , Ij)}) : Given a set of accepted
issuer’s public key ipkj and its attributes set Ij ⊆
{1, . . . , n}, it outputs a policy pol that consists of a
verifier’s public key vpk and a set of (ipkj , Ij , σj), where
σj is a policy signature on ipkj and Ij with vpk.

• VfPolicy(pp, pol, {(ipkj , Ij)}) : Given the policy pol,
the set of issuer’s public key and its attributes, it outputs
the validity of the policy.

• Present(pp, cred, ipk, U, I, usk, pol, ψU , ψI , ctx) :
Given the credential cred, the issuer’s public key ipk,
the user’s attributes set U , the issuer’s attributes set I ,
the user’s secret key usk, the policy pol, CNF formulas
ψU , ψI on the user’s and issuer’s attributes, and ctx to
define a context where the present protocol is accepted
(i.e., sessoin ID or a nonce), it outputs a presentation
token pt.

• Verify(pp, pt, pol, ψU , ψI , ctx) : Given the token pt, the
policy pol, the formulas ψU , ψI , and ctx, it outputs the
validity of the token.

B. Security

Security requirements for our issuer-hiding ABC system
are defined, which are derived from the original paper [1],
as follows.

• Correctness. Correctness requires that if every party fol-
lows the protocols, any presentation token is accepted by
the verifier.

• Unforgeability. Unforgeability requires that it is infeasible
for any adversary to generate a valid proof when the
adversary does not receive any credential on the disclosed
user’s and issuer’s attributes from one of accepted issuers.

• Unlinkability. Unlinkability requires that any adversary
cannot determine whether any two presentation tokens
are generated by the same user, which implies stronger
anonymity.

V. PROPOSED SYSTEM

We construct our proposed system by combining the pre-
vious system [6] and the accumulator [7] to verify CNF
formulas with negations with the constant-size attribute proofs.
In the previous system, attributes of a user and an issuer are
represented as vectors, such as (a1, · · · , aL) ∈ ZL

p , and an
accumulated value of ΠL

i=1H
ai is signed as a credential. As

the signature scheme, Groth’s structure-preserving signature
[5] is used, where the verification can be proved by an SPK.

In the proposed system, using the accumulator to verify
CNF formulas, attributes of a user are accumulated to PU =
Πl∈UGl for the set U of the attributes, and the attributes of the
issuer are accumulated similarly. Groth’s structure-preserving
signatures are used as in the previous system [6], and for
signatures required for the verification of accumulators, we
use Groth’s signatures instead of the AHO signatures [2] used
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in the previous system [7]. In the user’s attribute presentation
protocol, SPK-based attribute proofs using accumulators are
performed, where values for the accumulator verification are
blinded as in the previous system [1], and the SPK on the
blinded values is constructed.

A. Proposed Algorithm

ParGen(1λ, n, L, {ηl}1≤l≤L).
Given n that is the total number of attribute values, L that is
the maximum value of clauses of proved CNF formulas, and
ηl that are the upper bound of |V +

U,l ∪ V
−
U,l| and |V +

I,l ∪ V
−
I,l|.

(i) Generate a bilinear map parameters
(p,G1,G2,GT , e, G, G̃).

(ii) Set parameters of the accumulator as follows. Calculate
c1 = 1, cl = (ηl−1 + 1) · cl−1 for 2 ≤ l ≤ L,
and set C = (c1, ..., cL). Choose γ

$←− Zp, and cal-
culate and set pkacc = (C, G1 = Gγ1

, . . . , Gn =
Gγn

, Gn+2 = Gγn+2

, . . . , G2n = Gγ2n

, G̃1 =
G̃γ1

, . . . , G̃n = G̃γn

, G̃n+2 = G̃γn+2

, . . . , G̃2n =
G̃γ2n

, z = (G, G̃)γ
n+1

).
(iii) For Groth signatures, select skGroth1

$←− x and calculate
pkGroth1

= G̃x with Groth1.KGen, select skGroth2

$←−
y and calculate pkGroth2 = Gy with Groth2.KGen.
Select Y1, Y2

$←− G1, Ỹ1 and Ỹ2
$←− G2.

(iv) As in the ABC system [7] using the accumulator, to en-
sure the range of δ′U,l = δU,l+|V −

U,l| and δ′I,l = δI,l+|V −
I,l|

in each attribute proof of the accumulator, valid δ′U,l’s
and δ′I,l’s are signed by Groth signatures as follows, and
the signatures are included in the public parameters pp.
Calculate ΦU = {u′U =

∑L
l=1 δ

′
U,lcl | 1 ≤ δ′U,l ≤ ηl}

and ΦI = {u′I =
∑L

l=1 δ
′
I,lcl | 1 ≤ δ′I,l ≤ ηl}. For each

u′U ∈ ΦU , u
′
I ∈ ΦI , generate σ̃u′

U
= (R̃U , SU , TU ) =

(G̃r, (Y1 · Gx)1/r, (Y x
1 · G

u′
U

1 )1/r) as a signature on
G

u′
U

1 with Groth1.Sign, and σ̃u′
I

= (RI , S̃I , T̃I) =

(Gr, (Ỹ1 · G̃y)1/r, (Ỹ y
1 · G̃

u′
I

1 )1/r) as a signature on G̃u′
I

1

with Groth2.Sign for r $←− Z∗
p.

(v) Output the following parameters pp.
pp = (G1,G2,GT , e, p,G, G̃, {Yi}2i=1, {Ỹi}2i=1, pkGroth1

,
pkGroth2

, pkacc, {σ̃u′
U
}u′

U∈ΦU
, {σ̃u′

I
}u′

I∈ΦI
)

IKGen(pp). Output issuser’s secret key and public key
(isk, ipk) using Groth1.KGen.

(isk, ipk) = (a, Ã) = (a, G̃a)

UKGen(pp). Output user’s secret key and public key
(usk, upk) using Groth2.KGen.

(usk, upk) = (b,B) = (b,Gb)

Issue(pp, isk, U, upk). Compute the attribute parameter
PU =

∏
l∈U Gl for the user’s attribute set U ⊆ {1, . . . , n}.

Calculate a Groth1 signature on the attribute PU and the
user’s public key upk, as the credential cred by Groth1.Sign
with ipk, as follows.

cred = (R̃, S, T1, T2)

= (G̃r, (Y1 ·Gisk)1/r, (Y isk
1 · PU )

1/r, (Y isk
2 · upk)1/r)

VfCred(pp, cred, ipk, U, upk). Compute PU = Πl∈UGl,
and verify the validity of the credential cred by using
Groth1.Verify with ipk, as follows.

e(S, R̃) = e(Y1, G̃) · e(G, ipk)
e(T1, R̃) = e(Y1, ipk) · e(PU , G̃)

e(T2, R̃) = e(Y2, ipk) · e(upk, G̃)

PresPolicy(pp, {(ipkj , Ij)}). Generate a verifier key pair
(vsk, vpk) = (c, C) = (c,Gc) using Groth2.KGen. For
every accepted issuer j, calculate the issuer j’s attribute
parameter PIj =

∏
l∈Ij

G̃l for the issuer’s attribute set Ij ,
and compute a Groth2 signature σj on the issuer public key
ipkj and the issuer attribute PIj using Groth2.Sign with
vsk, as follows.

σj = (Rj , S̃j , T̃j,1, T̃j,2)

= (Gr, (Ỹ1 · G̃vsk)1/r, (Ỹ vsk
1 · ipkj)1/r, (Ỹ vsk

2 · PIj )
1/r)

Output the set pol = (vpk, {(ipkj , Ij , σj)}) for the every
accepted issuer j.
VfPolicy(pp, pol, {(ipkj , Ij)}). Compute PIj = Πi∈Ij G̃i for
every Ij in pol, and verify the validity of its signature σj using
Groth2.Verify with vpk, as follows.

e(Rj , S̃j) = e(G, Ỹ1) · e(vpk, G̃)
e(Rj , T̃j,1) = e(vpk, Ỹ1) · e(G, ipkj)
e(Rj , T̃j,2) = e(vpk, Ỹ2) · e(G,PIj )

Present(pp, cred, ipk, U, I, usk, pol, ψU , ψI , ctx). Given pp
including signatures σ̃u′

U
, σ̃u′

I
to certify the correctness of the

ranges of vaild u′U , u
′
I , a cred that shows the correctness of

the user’s attributes of PU and the user’s secret key usk, the
issuer’s public key ipk, and pol including a verifier’s signature
σj on ipkj = ipk and the attributes of PIj , and a proved CNF
formula ψU (resp., ψI ) on user’s (resp., issuer’s) attributes,
generate a zero-knowledge proof pt to prove the satisfication
of the CNF formulas on attributes that are certified by cred
and σj . First, generate the accumulators accVU

, accVI
, the wit-

nesses WU ,WI , and the parameters of the accumulators. Then,
perform the randomization Groth1.Rand, Groth2.Rand
for the credential cred and signatures σj , σ̃u′

U
, σ̃u′

U
. In addi-

tion, blind values that the randomizations output, and signed
messages, and compute SPKs to prove the verifications of the
blinded signatures and accumulators.
(i) Generate accumulators accVU

, accVI
for the CNF for-

mulas ψU = (V +
U,1, V

−
U,1, · · · , V

+
U,L, V

−
U,L), and ψI =

(V +
I,1, V

−
I,1, · · · , V

+
I,L, V

−
I,L).

accVU
=

∏
1≤l≤L

 ∏
j∈V +

U,l

G̃n+1−j


cl  ∏

j∈V −
U,l

G̃n+1−j


−cl

accVI
=

∏
1≤l≤L

 ∏
j∈V +

I,l

Gn+1−j


cl  ∏

j∈V −
I,l

Gn+1−j


−cl
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(ii) Generate the witnesses WVU
,WVI

.

WU =

∏
i∈U

∏
1≤l≤L

 j ̸=i∏
j∈V +

U,l

G̃n+1−j+i


cl  j ̸=i∏

j∈V −
U,l

G̃n+1−j+i


−cl

WI =

∏
i∈I

∏
1≤l≤L

 j ̸=i∏
j∈V +

I,l

Gn+1−j+i


cl  j ̸=i∏

j∈V −
I,l

Gn+1−j+i


−cl

(iii) Calculate parameters for each accumulator as follows.

δ′U,l = δU,l + |V −
U,l| for δU,l = |U ∩ V +

U,l| − |U ∩ V
−
U,l|

(1 ≤ l ≤ L)

u′U = δ′U,1c1 + . . .+ δ′U,LcL, τu′
U
= G

u′
U

1

δ′I,l = δI,l + |V −
I,l| for δI,l = |I ∩ V +

I,l| − |I ∩ V
−
I,l|
(1 ≤ l ≤ L)

u′I = δ′I,1c1 + . . .+ δ′I,LcL, τu′
I
= G̃

u′
I

1

ũU = |V −
U,1|c1 + . . .+ |V −

U,L|cL, τũU
= GũU

1

ũI = |V −
I,1|c1 + . . .+ |V −

I,L|cL, τũI
= G̃ũI

1

From pp, pick up the signatures σ̃u′
U
= (R̃U , SU , TU ) on u′U ,

σ̃u′
I
= (RI , S̃I , T̃I) on u′I . As in the previous system, using

Groth1.Rand, Groth2.Rand, rerandomize cred and σj
for ipkj = ipk of the issuer j. Furthermore, rerandomize the
signatures σ̃u′

U
, σ̃u′

I
on the accumulator parameters u′U , u

′
I .

(R̃, S, T1, T2)
$←− Groth1.Rand(pp, cred)

(Rj , S̃j , T̃j,1, T̃j,2)
$←− Groth2.Rand(pp, σj)

(R̃U , SU , TU )
$←− Groth1.Rand(pp, σ̃u′

U
)

(RI , S̃I , T̃I)
$←− Groth2.Rand(pp, σ̃u′

I
)

(iv) Select αU1
, αU2

, βU , γU , δU , αI1 , αI2 , βI , γI , δI , α, β1, β2,

γ, δ1, δ2
$←− Z∗

p , and blind the parameters in the rerandamized
signatures and the signed messages as follows.

Blinded signatures:

σ̃′
u′
U
= (R̃U , S

′
U , T

′
U ) = (R̃U , S

1/αU1

U , T
1/αU2

U ),

σ̃′
u′
I
= (RI , S̃

′
I , T̃

′
I) = (RI , S̃

1/αI1

I , T̃
1/αI2

I )

Blinded credential:

cred′ = (R̃, S′, T ′
1, T

′
2) = (R̃, S1/α, T 1/β1 , T 1/β2)

The blinded issuer’s public key: ipk′j = ipk
1/γ
j

Blinded policy signature:

σ′
j = (Rj , S̃j , T̃

′
j,1, T̃

′
j,2) = (Rj , S̃j , T̃

1/δ1
j,1 , T̃

1/δ2
j,2 )

Blinded attributes: P ′
U = P

1/βU

U , P ′
I = P

1/βI

I

Blinded witnesses: W ′
U =W

1/γU

U , W ′
I =W

1/γI

I

Blinded range conditions: τ ′u′
U
= τ

1/δU
u′
U

, τ ′u′
I
= τ

1/δI
u′
I

(v) Generate the following SPK.
π ← SPK[(αU1

, αU2
, βU , γU , δU , αI1 , αI2 , βI , γI , δI , α, β1,

β2, γ, δ1, δ2, usk) :

Groth1 credential check :

e(Y1, G̃)
−1 = {e(S′, R̃)−1}α · e(G, ipk′j)γ (1)

Groth1 credential check :

1 = {e(T ′
1, R̃)

−1}β1 · e(Y1, ipk′j)γ · e(P ′
U , G̃)

βU (2)

Groth1 credential check :

1 = {e(T ′
2, R̃)

−1}β2 · e(Y2, ipk′j)γ · e(G, G̃)usk (3)

Groth2 policy check :

e(Rj , S̃j)
−1 · e(G, Ỹ1) · e(vpk, G̃) = 1 (4)

Groth2 policy check :

e(vpk, Ỹ1)
−1 = {e(Rj , T̃

′
j,1)

−1}δ1 · e(G, ipk′j)γ (5)

Groth2 policy check :

e(vpk, Ỹ2)
−1 = {e(Rj , T̃

′
j,2)

−1}δ2 · e(G,P ′
I)

βI (6)

Groth1 range check :

e(Y1, G̃) · e(G, pkGroth1
) = e(S′

U , R̃U )
αU1 (7)

Groth1 range check :

e(Y1, pkGroth1
)−1 = e(τ ′u′

U
, G̃)δU · {e(T ′

U , R̃U )
−1}αU2 (8)

Groth2 range check :

e(G, Ỹ1) · e(pkGroth2 , G̃) = e(RI , S̃
′
I)

αI1 (9)
Groth2 range check :

e(pkGroth2
, Ỹ1)

−1 = e(G, τ ′u′
I
)δI · {e(RI , T̃

′
I)

−1}αI2 (10)

user acumulator check :

e(GũU
1 , G̃n) = {e(P ′

U , accVU
)−1}βU ·

e(G,W ′
U )

γU · e(τ ′u′
U
, G̃n)

δU (11)

issuer acumulator check :

e(Gn, G
ũI
1 ) = {e(accVI

, P ′
I)

−1}βI ·
e(W ′

I , G̃)
γI · e(Gn, τ

′
u′
I
)δI ](pol, ψU , ψI , ctx)

(12)

The zero-knowledge proof using this SPK verifies that the
following conditions are satisfied.

• Whether the credential cred is signed by the issuer j on
PU and upk. (eq. (1)-(3)).

• Whether the policy signature σj is the verifier’s signature
on ipkj and PIj . (eq. (4)-(6)).

• The signatures σ̃u′
U

, σ̃u′
I

are the signatures on τu′
U

=

G
u′
U

1 , τu′
I
= G

u′
I

1 . (eq. (7)-(10)).
• Pk of user’s attributes and PIj of issuer’s attributes satisfy

the verifications of the accumulators (eq. (11)-(12)).

(vi) Output pt = ((R̃, S′, T ′
1, T

′
2), ipk

′
j , (Rj , S̃j , T̃

′
1,j , T̃

′
2,j),

(R̃U , S
′
U , T

′
U ), (RI , S̃

′
I , T̃

′
I), P

′
U , P

′
I ,W

′
U ,W

′
I , τ

′
u′
U
, τ ′u′

I
, π).

Verify(pp, pt, pol, ψU , ψI , ctx). SPK π in pt is verified on
the formulas ψU , ψI , and pt is accepted if π is valid, and
otherwise it is rejected.
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VI. SECURITY

Here, we discuss that the proposed system satisfies the
requirements of unforgeability and unlinkability shown in
the Section IV.B. As for the unforgeability, the verification
formulas of Groth signatures cred, σj , σ̃u′

U
and σ̃u′

I
are proved

with the SPK π in pt, and thus the unforgeability of Groth
signatures and the soundness of SPK imply that the issuer’s
public key ipkj = ipk is signed by the policy signature as in
the previous systems [1], [6]. Furthermore, the correctness of
PU = Πl∈UGl, PIj = Πl∈Ij G̃l, u′U ∈ ΦU , and u′I ∈ ΦI are
ensured for blinded P ′

U = P−βU

U , P ′
I = P−βI

I , τ ′u′
U
= τ−δU

u′
U

,

τ ′u′
I

= τ−δI
u′
I

where τu′
U

= G
u′
U

1 and τu′
I

= G
u′
I

1 . Thus,
u′U = ΣL

l=1δ
′
U,lcl s.t. 1 ≤ δ′U,l ≤ ηl holds. Since the SPK

proves eq.(11), we have

e(τũU
, G̃n) = e(P ′

U , accVU
)−βU ·

e(G,W ′
U )

γU · e(τ ′u′
U
, G̃n)

δU

From PU = P ′
U
βU , WU =W ′

U
γU , and τu′

U
= τ ′u′

U

δU , we have

e(τũU
, G̃n) = e(PU , accVU

)−1·
e(G,WU ) · e(τu′

U
, G̃n),

e(PU , accVU
) · e(G,WU )

−1 = e(τu′
U
· τ−1

ũU
, G̃n).

From τũU
= G

|V −
U,1|c1+···+|V −

U,L|cL
1 and τu′

U
=

G
δ′U,1c1+···+δ′U,LcL
1 , we have

e(PU , accVU
) · e(G,WU )

−1 = e(G1, G̃n)
ΣL

i=1(δ
′
U,l−|V −

U,l|)·cl .

For δU,l = δ′U,l − |V
−
U,l|, due to 1 ≤ δ′U,l ≤ ηl, we have

1 ≤ δU,l+ |V −
U,l| ≤ ηl. Therefore, the accumulator verification

is proved, and thus the CNF formula ψU is satisfied by U .
For the issuer’s attributes, we can prove that ψI is satisfied
similarly.
As for the unlinkability, it follows from the hiding property
of the rerandomization and blinding, and the zero-knowledge
property of SPK.

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To evaluate our system, we implemented it on a PC (WSL2
Ubuntu 22.04.4 LTS, AMD Ryzen 7 5700X 8-Core Processor,
32.0GB) using C language with GMP library and pairing
library ELiPS [?]. A Barreto-Lynn-Scott curve of embedding
degree 12 over a 461-bit prime field is used.
We measured the processing times of Issue/VfCred,
PresPolicy/VfPolicy, and Present/Verify. Unless oth-
erwise noted, the number of issuers in the policy is 10, the
maximum number n of attributes is 1000, the numbers of
user’s and issuer’s attributes are 10, and the number of literals
of proved CNF formula is 10.

A. Comparisons of Performances between Previous Systems
and Proposed System

We show comparisons of performances of algorithms be-
tween the previous systems [1], [6] and the proposed system

Fig. 1. Comparisons of performances between the previous systems and the
proposed system

in Fig.1. In the proposed system, the processing times of
Present and Verify are increased, since the verifications
for the user’s and the issuer’s attributes using accumulator are
added. However, the times are less than 100ms, and those are
practical on a PC for general use.

B. Performance for Number of User’s or Issuer’s Attributes

Fig. 2. Performance for the number of the user’s or issuer’s attributes

In Fig.2, we show the processing times of Present and
Verify, when the number of the user’s or issuer’s attributes
are increased by 10. The Verify time is constant, due to the
accumulator. The Present time increases linearly, since the
generation of the witnesses WU , WI depends on the number
of the attributes. However, the amount of increase is gradual,
and the time is practical in case of even 100.

C. Performance for Number of CNF Literals

In Fig.3, we show the processing times of Present and
Verify, when the number of literals in a proved CNF formula
is increased from 10 to 1000. Similarly to Fig.2, the Present
time increases linearly, since the generations of the accumula-
tors accVU

, accVI
and the witnesses WU , WI depend on the

number of the literals. As the CNF formula is more complex,
the more present time is headed. However, the Verify time
is constant and very fast.
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Fig. 3. Performance for the number of CNF literals

D. Comparisons of Data Size between Previous Systems and
Proposed System

We discuss the data size of the public parameter in
ParGen, the policy in PresPolicy and the presentation
token in Present. The order of the data size of the public
parameter is O(n + ΠL

l=1ηl), since the accumulator’s setup
parameter depends on the maximum size of attributes n, and
the numbers for ΦU , ΦI are ΠL

l=1ηl. The size of the policy
pol is O(NI) for the number NI of accepted issuers, since
the policy includes signatures for the accepted issuers. Since
the number of verifications using the accumulator in the SPK
is constant, the size of the presentation token pt is constant.

VIII. CONCLUSION

In this paper, we have proposed an extended issuer-hiding
ABC system, where the attribute proof can be verified using
the accumulator [7]. The processing time of the verification do
not depend on the number of attributes of user and issuer, and
the size of CNF formula, and the proof size is also constant.
On the other hand, the processing time of the attribute proof
generation is increased.
Our future work includes an implementation of an application
system using the proposed system, and its evaluation.
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