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Abstract—In the multi-objective optimization problems, errors
due to parameter variations may occur in the real world, and it
is useful to find a solution that minimizes such errors. Solutions
with high stability against such uncertainties are called robust
solutions.

In this study, we propose a bee colony optimization algorithm
for finding robust Pareto optimal solutions to the multi-objective
knapsack problem. We implement the proposed method in an
experimental environment to verify the usefulness of the proposed
method. In this experiment, we compare the proposed method
with an existing algorithm and show that our proposed algorithm
obtains a better robust Pareto optimal solution for the multi-
objective knapsack problem.

I. INTRODUCTION

An optimization problem with one objective function is
called a single-objective optimization problem, and there may
exist a unique optimal solution for a single-objective optimiza-
tion depending on the objective function. On the other hand,
an optimization problem with multiple objective functions
is called a multi-objective optimization problem. For multi-
objective optimization problems, there is not a single optimal
solution because there exists a trade-off between two or more
conflicting objective functions.

For multi-objective optimization problems, the concept of
Pareto-optimal solutions [4] was introduced to discuss optimal
solutions. The set of Pareto-optimal solutions is the set of so-
lutions that are not inferior to other solutions and is defined by
the dominance relation of the solutions. Since the problem of
computing the maximal Pareto-optimal solutions for a multi-
objective optimization problem is generally computationally
hard, approximation algorithms are needed, and a number of
optimization algorithms that compute Pareto-optimal solutions
have been proposed for the multi-objective 0-1 knapsack prob-
lem as a representative multi-objective optimization problem.

On the other hand, the solution obtained using a simple
optimization is affected by changes in variables in the real
world due to errors and other factors, and the predicted
optimality of the solution may not be guaranteed. Therefore,
the concept of a robust solution, which is a solution that
is less affected by changes in variables, for multi-objective
optimization problems was proposed in [2]. Specifically, two
types of robust solutions were considered in [2]. One type
of robust solutions optimizes an average of the values of the
objective functions for neighboring solutions. The other type
of robust solutions ensures robustness in the sense that the

difference between an objective function and the average of
the objective function over neighboring solutions is less than
a given constant.

As an example of robust solutions to a multi-objective
optimization problem, an optimization algorithm based on a
population protocol is proposed in [5]. The population protocol
is a computational model for a mobile sensor network with
limited computing power, in which multiple agents communi-
cate with each other and perform state transitions.

In the present paper, we propose a bee colony optimization
algorithm for considering both types of robustness for the
multi-objective 0-1 knapsack problem. We implement the
proposed algorithm and a previous algorithm [5] in a sim-
ulation environment to evaluate the validity of the proposed
algorithm. The experimental results show that the proposed
algorithm obtains a better set of Pareto optimal solutions than
the previous algorithm.

II. PRELIMINARIES

A. Multi-objective optimization problem

We assume that an instance of the problem is m-
dimensional decision variables (vector) x. The multi-objective
optimization problem consists of a set of n objective func-
tions {f0(x), f1(x), · · · , fn−1(x)} and a set of k constraint
functions {g0(x), g1(x), · · · , gk−1(x)}. Then, each objective
function is defined as image from x to n objective function
vector y. The definition is mathematically formulated as
follows.

max /min y = {f0 (x) , f1 (x) , ..., fn−1 (x)}
such that x = (x0, x1, ..., xm−1) ∈ X,

X = {x | ∀i ∈ {0, 1, ..., k − 1}, gi (x) ≤ 0}

In the above definition, X is called the set of feasible
solutions for the problem.

Since no solution is optimal for all of the objective functions
in the multi-objective optimization problem, only a solution
that is not inferior to the other solutions is needed. Such a
solution is called a Pareto-optimal solution, and we first define
the dominance relationship of the solutions in order to define
a Pareto-optimal solution.

We assume that x1 and x2 are two feasible solutions for
the problem and that we want to maximize all the objective
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functions. Then, x2 dominates x1 if and only if the following
two conditions hold.

∀i ∈ {0, 1, ..., n− 1}, fi (x1) ≤ fi (x2)

∃j ∈ {0, 1, ..., n− 1}, fj (x1) < fj (x2)

In this paper, x1 ≺ x2 denotes that x2 dominates x1.
In addition, a feasible solution x is called Pareto optimal

if and only if there is no feasible solution x′ ∈ X such
that x ≺ x′. Since a Pareto-optimal solution is a solution
that cannot be improved for any of the objective functions
without degrading one of the other functions, the maximal set
of Pareto-optimal solutions is considered the optimal solution
for a multi-objective optimization problem.

There are various metrics for a set of Pareto-optimal solu-
tions for a multi-objective optimization problem. In this paper,
we evaluate a set of Pareto-optimal solutions using a hyper-
volume indicator [1]. Let hx be the volume of the hypercube
created by Pareto-optimal solution x and the reference point
r. The hypervolume H for a set of Pareto-optimal solutions
is defined by H =

⋃
x∈X hx.

B. Multi-objective 0-1 knapsack and robust solutions

The input of the multi-objective 0-1 knapsack problem is
as follows.

• n knapsacks whose capacities are c0, c1, · · · cn−1.
• m items stored in the knapsacks. pi,j and wi,j denote

value and weight of item j for knapsack i, respectively.
Let x = (x0, x1, · · · , xm−1) be an m-dimensional Boolean

vector. Then, the multi-objective 0-1 knapsack problem is
formulated as follows.

max y = {f0 (x) , f1 (x) , ..., fn−1 (x)}

fi(x) =

m−1∑
j=0

pi,jxj

such that
m−1∑
j=0

wi,jxj ≤ ci (0 ≤ i ≤ n− 1)

For solutions of multi-objective optimization problems, the
previously mentioned two types of robustness defined in [2]
are here called Type I and Type II, both of which guarantee that
a solution is robust against variable perturbation. Using these
definitions, we define robust solutions for the multi-objective
0-1 knapsack problem.

Type I robustness: A robust solution of Type I is obtained
by optimizing the mean effective function, feff

i (x), which is
defined as follows.

feff
i (x) =

1

Ns

Ns−1∑
g=0

m−1∑
j=0

pi,jx
g
j

In the above definition, Ns is the number of neighborhood
solutions x: x0,x1...,xNs−1.

Using the mean effective function, a robust solution of Type
I for the multi-objective 0-1 knapsack problem is defined as
follows.

max y = {feff
0 (x) , feff

1 (x) , ..., feff
n−1 (x)}

such that
m−1∑
j=0

wi,jx
g
j ≤ ci (0 ≤ i ≤ n− 1, 0 ≤ g ≤ Ns − 1)

Type II robustness: A robust solution of Type II is defined
with the mean effective function and an additional constraint,
a threshold η. Threshold η is used to guarantee that the dif-
ference between the objective function and the mean effective
function at the solution is less than η.

A robust solution of Type II for the multi-objective 0-1
knapsack problem is defined as follows.

max y = {f0 (x) , f1 (x) , · · · , fn−1 (x)}

such that
m−1∑
j=0

wi,jx
g
j ≤ ci (0 ≤ i ≤ n− 1, 0 ≤ g ≤ Ns − 1)

feff
i (x)− fi (x)

fi (x)
≤ η (0 ≤ i ≤ n− 1)

III. BEE COLONY OPTIMIZATION FOR ROBUST SOLUTIONS
OF THE KNAPSACK PROBLEM

Bee colony optimization [3] is an optimization technique
based on the property of living bees in a group. We show
an outline of our algorithm for robust solutions of the multi-
objective 0-1 knapsack problem using the bee colony opti-
mization in the followings.

Algorithm: a bee optimization for robust solutions of the
multi-objective 0-1 knapsack problem

Step 1: Each bee i (0 ≤ i ≤ n − 1) generates an initial
solution xi = (xi,0, xi,1, · · · , xi,m−1). (Each xi,j is
randomly set to 0 or 1.) Then, values of objective
functions are computed according to the definition of
Type I or Type II robustness. After the computation
of the values of all bees, the Pareto-optimal solution
is computed from the solutions of the bees, and
stored in a set P .

Step 2: The following operations (2-1) ∼ (2-3) are repeated
up to a maximum number of generations.

(2-1): This step simulates a habit of the employed bee.
Each employed bee searches a better solution by
exchanging information with other bees. Based on
the habit of the employed bee, a new solution x̂i for
bee i is computed using the following formula.

x̂i,j =

{
xi,j (if xi,j = xk1,j = xk2,j)

xi,j (otherwize)
(1)

In the above equation, k1 and k2 are randomly
selected two numbers of other bees.
Next, the adjustment process, which adjusts items
in the knapsack according to capacity limitation,
is performed on the obtained solution x̂i. Then,
each bee i computes values of objective functions
according to the definition of Type I or Type II
robustness again, and the solution is added to the
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TABLE I
HYPERVOLUMES FOR ROBUST SOLUTIONS

Type I robustness Type II robustness
Bee colony optimization 3.8992× 108 3.9121× 108

Population Protocol [5] 3.873× 108 3.8862× 108

set P . Finally, Pareto optimal solution is computed
for P .

(2-2): This step simulates a habit of the onlooker bee. Each
onlooker bee chooses a better solution near good
solutions obtained by the other bees. Based on the
habit of the onlooker bee, computation is executed
as follows.
The onlooker bee chooses one of two solutions, xgb

and xk. xgb is a solution with the closest Hamming
distance to the solution of the bee. On the other hand,
xk is a solution that is randomly chosen from the
other bees.
Let x̂i be a new solution for the onlooker bee i. The
first choice is executed according to the following
formula. (r is a real random number between 0 and
1.)

x̂i =

{
xgb (r < 0.9)

xk (otherwise)

Then, x̂i is modified as follows. First, two variables
in x̂i, xi,u = 1 and xi,v = 0, are randomly selected.
(In the current solution, item u is in the knapsack,
and item v is not in the knapsack.) Next, the values
of the two variables are reversed as xi,u = 0 and
xi,v = 1. (The item u is interchanged with the item
v.)
After the modification, the adjustment process is
performed on the obtained solution x̂i, and each bee
i computes values of objective functions again for
the solution x̂i according to the definition of Type I
or Type II robustness. The solution is added to P ,
and Pareto optimal solution is computed for P .

(2-3): This step simulates a habit of the scout bee. Each
scout bee searches a new solution randomly.
In this step, 1% of bees are changed into a scout bee,
and each scout bee i abandons its solution and ini-
tializes the solution x̂i. The initialization procedure
is the same as Step 1.

Step 3: Output the final Pareto optimal solution set P .

IV. EXPERIMENTAL RESULTS

Our proposed algorithm and a previous algorithm [5] are
implemented using Python 3, and we compare Pareto-optimal
solutions and hypervolume indicators.

Table I shows hypervolumes for solutions of the proposed
algorithm and the previous algorithm in the case that the
execution time is about 1800 seconds. The table indicates that
our proposed algorithm obtains a wider range of solutions than
the previous algorithm.

Fig. 1. Experimental results for Type I robustness

Fig. 2. Experimental results for Type II robustness

In addition, Fig. 1 and Fig. 2 show Pareto-optimal solutions
for Type I and Type II robustness, respectively. These results
indicate that the proposed algorithm is superior to the previous
algorithm for computing solutions in case that one of the
objective functions is highly weighted.

V. SUMMARY

In this study, we proposed an algorithm to find a robust
Pareto-optimal solution set for the multi-objective knapsack
problem using a bee colony optimization. Experimental results
show that the proposed algorithm obtains a better set of robust
Pareto-optimal solutions.

As our future research, we are considering cases such that
there are three or more objective functions.
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