Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

Towards Hybrid CPU-GPU Computing in a
Backtracking-based Load Balancing Framework

Jing Xu
Graduate School of Informatics
Kyoto University
Kyoto, Japan
jing.xu.38s @st.kyoto-u.ac.jp

Zhengyang Bai
RIKEN Center for Computational Science
RIKEN
Tokyo, Japan
zhengyang.bai @riken.jp

Tasuku Hiraishi

Department of Information and Computer Science,

Faculty of Engineering
Kyoto Tachibana University
Kyoto, Japan
hiraishi @tachibana-u.ac.jp

Keiichiro Fukazawa

Academic Center for Computing and Media Studies

Kyoto University
Kyoto, Japan
fukazawa@media.kyoto-u.ac.jp

Masahiro Yasugi
Department of Computer Science and Networks
Kyushu Institute of Technology
lizuka, Japan
yasugi@csn.kyutech.ac.jp

Abstract—General-purpose computing on graphics process-
ing units (GPGPUs) has become increasingly prevalent, with
hybrid CPU-GPU systems at the forefront of parallel comput-
ing. Dynamic load balancing is highly effective for maximizing
CPU and GPU utilization in such environments. Backtracking-
based load balancing, utilizing work-stealing, offers a promising
strategy for task parallelism. However, Tascell, a task-parallel
language implementing this mechanism, currently lacks GPU
support, limiting its potential for hybrid CPU-GPU parallelism
and constraining its application in computationally intensive
tasks. In this paper, we propose enabling Tascell to fully utilize
the computational power of CPU-GPU hybrid environments by
writing both CPU-oriented and GPU-oriented code for workers
to execute, allowing any worker to run GPU-oriented code based
on task size and GPU availability. Using this technique, we
implemented hybrid CPU-GPU programs for three applications
using Tascell: recursive block matrix multiplication, 2D sten-
cil computations and Mandelbrot Set calculations. The GPU-
oriented code was implemented using OpenACC or the NVBLAS
library. We conducted performance evaluations on both high-
performance and workstation-grade CPU-GPU hybrid comput-
ing environments. Results demonstrated that in the workstation-
grade environment, the hybrid approach outperformed both
CPU-only and GPU-only configurations. Notably, hybrid CPU-
GPU executions achieved performance improvements of up to
12.85% and 25.19% in 2D stencil applications compared to
GPU-only and CPU-only executions, respectively. These findings
provide valuable insights into effectively leveraging hybrid CPU-
GPU systems within a backtracking-based load balancing frame-
work.

Index Terms—GPGPU, hybrid CPU-GPU, task parallel lan-
guage, dynamic load balancing, 2D stencil computation, recursive
block matrix multiplication, Mandelbrot Set calculations

I. INTRODUCTION

As data-intensive applications continue to grow in com-
plexity, the need for more powerful and efficient computing
solutions is increasing, driving the development of hybrid
CPU-GPU systems. These systems leverage the strengths of
CPUs for handling complex, sequential tasks with intricate
logic, and the capabilities of GPUs for executing highly
parallel operations, providing enhanced computational power
and efficiency to meet the demands of modern data-driven
applications [1] [2] [3], such as scientific simulations, machine
learning, and real-time data processing.

To fully utilize the resources of hybrid CPU-GPU systems,
many language frameworks have been developed. CUDA
and OpenCL are the primary tools for GPU programming.
CUDA, developed by NVIDIA, provides direct access to GPU
hardware and a broad ecosystem of development tools and
libraries, making it very efficient for NVIDIA GPUs, but
is specific to a certain type of hardware (such as NVIDIA
GPUs), limiting the portability of the code [4]. The open
standard OpenCL provides cross-platform compatibility across
a variety of hardware, but performance inconsistencies and
compatibility issues may still be encountered on different plat-
forms [5]. Additionally, hybrid CPU-GPU systems, supported
by frameworks like OpenACC [6], OpenMP [7], MPI [8], and
SYCL [9], enable efficient parallelism across heterogeneous
computing environments. High-level libraries and APIs, such
as cuBLAS [10] and cuDNN [11] for CUDA, further sim-
plify development and enhance performance. By leveraging

—H8—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

these tools and frameworks, developers can create robust and
efficient applications to meet the demands of contemporary
computing challenges, particularly for problems with regular
structures. However, these programming models all face some
common challenges due to the fundamental differences in ar-
chitecture and performance characteristics of CPUs and GPUs.
For example, the issue of dynamic task parallelism: these
models are mainly designed for conventional applications and
do not handle subtasks dynamically created at runtime well,
often leading to workload imbalance [12]. In addition, irregular
problem handling is challenging. Irregular computing tasks
are difficult to predict in terms of task completion time and
the number of new tasks created dynamically. Porting these
tasks directly to the GPU is challenging because GPUs rely on
uniform work distribution to fully exploit their data parallelism
capabilities. Thus, an efficient load balancing mechanism is
essential to fully utilize GPU resources.

Previous studies have explored a variety of approaches,
both hardware and software-based, to address load imbal-
ance in hybrid CPU-GPU parallel executions. Hardware-based
solutions, such as using a host thread for task distribution
or employing a shared task pool, have notable drawbacks.
Host thread-based distribution can lead to underutilization
of CPU resources [13], while shared task pools may suffer
from overhead due to access violations and synchronization
issues [14]. Software-based methods, including static load bal-
ancing, present challenges. Static approaches lack adaptability
to varying workloads [15].

Tascell [16] is a promising task-parallel language,
which employs a unique load balancing mechanism called
backtracking-based load balancing. A Tascell worker performs
sequential computation without creating any logical task un-
til it receives a task request from another idle worker. To
generate tasks of the largest possible granularity, when a
worker receives a task request, it temporarily backtracks to a
previous state before creating the task. This technique achieves
efficient load balancing with minimal overhead for irregular
applications. While the current implementation of Tascell does
not support GPU computing, enabling workers that acquire
substantially large tasks to use GPUs could potentially maxi-
mize the utilization of computational resources in CPU-GPU
hybrid environments. This would be particularly beneficial for
numerical computations involving irregularities.

To investigate the potential benefits of such functionality,
we enabled Tascell programs to use GPUs as well as CPUs
by incorporating both CPU-oriented and GPU-oriented code
executions. We enabled Tascell workers to run either GPU-
oriented or CPU-oriented code in parallel, based on task
size and GPU availability. Additionally, using this technique,
we developed hybrid CPU-GPU programs for three applica-
tions using Tascell: recursive block matrix multiplication, 2D
stencil computations, and Mandelbrot set calculations [17].
Considering performance, compatibility, and implementation

simplicity, GPU-oriented code was implemented using Ope-
nACC or the NVBLAS library [18]. Performance evaluations
were conducted on two CPU-GPU hybrid environments: a
high-performance system with a 64-core AMD EPYC 7513
CPU and an NVIDIA A100 GPU, and a workstation-grade
system with a 4-core Intel Xeon Gold 6140 CPU and an
NVIDIA Quadro P4000 GPU. The contributions of this paper
are summarized as follows.

o We propose a method for Tascell to fully utilize hybrid
CPU-GPU systems. This is achieved by allowing workers
to execute both CPU-oriented and GPU-oriented code.
This method enables any worker to dynamically execute
GPU-oriented tasks depending on task size and the avail-
ability of GPU resources, optimizing overall performance.

o We apply this method to implement hybrid CPU-GPU
programs for three applications in Tascell: recursive block
matrix multiplication, 2D stencil computations, and Man-
delbrot Set calculations. The GPU-oriented code was
implemented using OpenACC or NVBLAS library.

o Comprehensive performance evaluations were conducted
on high-performance and workstation-grade CPU-GPU
hybrid environments. The results showed that in the
workstation-grade setup, the hybrid approach outper-
formed both CPU-only and GPU-only configurations.
Specifically, hybrid CPU-GPU executions improved per-
formance by up to 12.85% compared to GPU-only and
25.19% compared to CPU-only in 2D stencil applications.
These findings provide valuable insights into the effective
use of hybrid CPU-GPU systems within a backtracking-
based load balancing framework.

The organization of this paper is as follows. In Sec-
tion II, we provide an overview of the Tascell framework.
Next, we present the details of the proposed methodology
and implementation using Tascell framework on hybrid CPU-
GPU systems in Section III. Section IV shows performance
evaluation. We review related work in Section V. Finally, we
draw conclusions and outline potential directions for future
research in Section VI

II. TASCELL FRAMEWORK

This section introduces Tascell framework, which we used
in our implementation.

A. Dynamic Load Balancing in Tascell

Tascell [16] is a task parallel language that employs a
backtracking-based work stealing strategy. Unlike fine-grained
multi-threaded languages like Cilk [19] that use Lazy Task
Creation (LTC) [20], a Tascell worker executes its tasks
sequentially and only spawns a task in response to a work-
stealing request from another worker. When encountering a
spawnable task (e.g., in a parallel loop), the worker simply

— 59—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

double A[N][N]; //Matrix of size N x N

double B[N][N]; //Matrix of size N x N

double T_B[N][N]; //Transposed version of matrix B
double C[N][N]; //Matrix to store the result of A x B
int th; //Threshold value

// Initialization

Initialization (A, B)

// Row and column indeices for the top-left corner
//of the matrix block

c_r = 0;

c_c = 0;

n = N;

// Recursive block matrix multiplication

block_recursive_mm(int c_r, int c_c, int n) {

if (n <= th) {

// Direct matrix multiplication

for (1 = 0; 1 < n; i++)

for (3 = 0; J < n; Jj++)
Cli + c_r]l[j + c_c] =
SNV AL+ e_r[k] « T_Blj + c_c][k];)

} else {

// Submatrix indices

// Top-left
block_recursive_mm(c_r,
// Top-right

c_c, n/2);

block_recursive_mm(c_r, c_c + n/2, n/2);
// Bottom-left
block_recursive_mm(c_r + n/2, c_c, n/2);

// Bottom-right

block_recursive_mm(c_r + n/2, c_c + n/2, n/2); }

Fig. 1: Sequential C Program for Recursive Block Matrix
Multiplication.

notes the opportunity and continues execution as if on a fully
sequential path. Each worker maintains a workspace with the
necessary data, updated at each step.

For efficient load balancing, idle workers request tasks
from busy workers. An idle worker can send a task request to
either a specific worker or any available one. When a worker
(the victim) receives a request from another worker (the thief),
it backtracks to the earliest parallelizable point, where the
largest task can be spawned, and spawns a task as if switching
from sequential to parallel execution. The victim then creates
and initializes a new workspace for the task by copying its
current workspace after backtracking. In short, when a worker
receives a task request:

o it backtracks (returns to a previous state),

o it spawns a task (and changes the execution path to
receive the result of the task),

o it returns from the backtracking (restore the time), and

« then it resumes its own task.

B. Example

We explain the work stealing mechanism in Tascell and
Tascell programming using recursive block matrix multiplica-
tion as an example, which will also be used in the subsequent
explanation of the proposed method and performance evalua-
tion.

1 double A
2 | double B
3 | double T
4 | double C
5 int th;
6 | // The definitioin of a task named tmm
7 | task tmm {
8 in: int th; // input

91 }i

10 | //The entry point of tmm

11 | //The task object this is declared implicitly
12 task_exec tmm {

13 block_para(this.param, this.n, this.il, this.i2);
14 |}

15 | worker block_recursive_mm(int c_r, intc_c, int n) {

16 if(n < th){

17 for (1 = 0; 1 < n; i++)

18 for (j = 0; 3 < n; Jj++)

19 Clit+c_r][j+c_c] =

20 Eff;ol Ali 4+ c_r][k] * T_B[j + c_c][k]; }
21 elsef

2 // Compute the indices of the first element
23 // of each submatrix of C

24 int param[4][2] = {

25 {c_r, c_c},

26 {c_r, c_c + n/2},

27 {c_r + n/2, c_c},

28 {c_r + n/2, c_c + n/2}};

29 block_para(param, n/2, 0, 4);}

30 |}

31 worker block_para(int (*param)[2], int n, int il, int 1i2)

32 {

33 do_many for i from il to i2 // paralell loop

34 block_recursive_mm(param[i] [0], param[i][1], n/2);
35 handles tmm from jl to j2

36 //put part (performed before sending a task)

37 { this.param = param;

38 this.n = n;

39 this.il = j1;

40 this.i2 = j2; } // end of do_many

Fig. 2: Tascell Program for Block Recursive Matrix Multipli-
cation (without GPU).

Figure 1 shows a C program that implements blocked
matrix multiplication using recursive algorithm. The Tascell
language is an extended C language. Figure 2 shows a par-
allelized Tascell program (Tascell extensions are underlined)
for recursive blocked matrix multiplication based on the C
code in Figure 1. We can write a worker program with
the following constructs in Tascell, starting with an existing
sequential program.

The top-level task declaration task tmm {---}; defines
the structure of a task object named tmm. Several fields with
in: attribute are declared as the computing input'.

task_exec defines the computation of a tmm task.
In the body block_para(this.param, this.n,
this.il, this.i2), the task object can be refereed to
by the keyword this.

ITascell provides the capability to specify task outputs using the :out
attribute. However, this feature is not employed in this implementation of
recursive block matrix multiplication because the computation results are
written to the global variable C.

—60—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

=+ (2). spawn a task

(1). backtrack

a task request

I after spawning

(3). return from
backtracking

intratask

intertask

(4). resume

Fig. 3: Spawning a task lazily while computing C’é\fo in Tascell.
When a worker detects a task request at Cé\f ({ *,it (1) backtracks
to the oldest task-spawnable point C’é\fo, (2) spawns a task
for CJJ\\,I//;() and CIJVV;; N2 (3) returns from backtracking and

(4) resumes its own computation.

Worker functions in Tascell, defined with the keyword
worker, can include task division constructs. In line 33 in
Figure 2, the do_many statement is used to divide an iterative
computation. This is syntactically denoted by:

for (int identifier :
statementyody
handles task-name (int identifiers.om, int identifier,)
{ statementy,, statementgey }.

€XPrfromr €XPTto)

This iterates statementy,q, over integers from expry,, (in-
clusive) to expr,, (exclusive). During the execution of a loop,
when the implicit task request handler (available during the
iterative execution of statementy,qy) is triggered, it dynamically
spawns a new task for the upper half of the remaining
iterations. The specific range for this new task is indicated
in statement,,, by identifiers,, and identifier,,.

Figure 3 illustrates how a task is spawned lazily in an
execution of the program of Figure 2. In Figure 3, each tree
node being computation step is represented by a corresponding
symbol like C{fj. Here, C is the result of A x B. In the notation
C{fj, 1 and j are the indices of the first element of a submatrix
of C, while n represents the size of this submatrix. In the
upper part of the figure, suppose that a worker w, executes

the computation and C’é\”o is the oldest task spawnable point
of w,. When w, receives a task request from another worker
wy at Cé\’[é 4,

e it temporarily backtracks to C’éYO,

e spawns a task to perform the computation of the right
subtree, which corresponds to the remaining half of the
unexecuted iterations of the parallel loop (in line 33 in
Figure 2) at Cé\fo, and sends the task to w;, and

o returns from the backtracking and resumes its own task

from Cé\f ({ *

Each task and its result are transmitted as a task object
among workers. The structure of this object is defined in a
Tascell program by the user. It can be transferred by passing
the pointer in shared memory environments.

III. METHODOLOGY AND IMPLEMENTATION
A. Applications

We employ three applications as examples to demonstrate
the effective utilization of computational power in CPU-GPU
hybrid environments in Tascell: recursive blocked matrix mul-
tiplication, 5-point 2D stencil computations, and Mandelbrot
Set calculations.

1) Recursive Block Matrix Multiplication: Matrix mul-
tiplication is essential in many scientific applications and
has recently been proposed as an alternative to convolution
operations in Deep Neural Networks (DNNs) using the im2col
transformation. Recursive blocked matrix multiplication, an
optimization technique, can refine memory access patterns and
reduce cache misses. Furthermore, high-performance linear
algebra libraries, such as BLAS and cuBLAS, implement
blocked matrix multiplication to efficiently solve linear sys-
tems, eigenvalue problems, and singular value decomposition
on both CPUs and GPUs. These libraries utilize blocking
techniques to optimize memory access and leverage advanced
hardware features, making them crucial tools for large-scale
computational tasks.

2) 5-point 2D Stencil Computations: Stencil computations
are a type of numerical data processing technique used to
update array or grid elements based on a fixed pattern known
as a stencil. This technique involves an update rule that
combines the values of neighboring elements according to
the stencil pattern to compute a new value for each element
in the grid. Typically applied to multi-dimensional arrays or
grids—such as matrices in 2D problems—stencil computations
are widely used in scientific and engineering applications
to solve spatially dependent problems effectively. Given that
stencil computations involve tight coupling of neighboring
cells, where each cell’s update depends on its neighbors, they
are often memory-bound. This characteristic has led to explo-
ration of various parallel architectures for efficient execution.

—61—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

1
2

3 | double T_B
4 | double C[N] ;

5 | int thl, th2, th_cpu;
6 | // The definitioin of a task named tmm
i

8

9

task tmm{
in: int n; // input
in: int (xparam) [2];; // input
10 in: int i1; // input
1 in: int i2; // input

12| };

13 | //The entry point of tmm

14 | //The task object this is declared implicitly
15 task_exec tmm{

16 block_para(this.param, this.n, this.il, this.i2);

17 }

18 | worker block_recursive_mm(int c_r, intc_c, int n){

19 if((thl < n < th2) ss&

20 (pthread_mutex_trylock (&émyMutex) == 0)) {
21 mm_sub_gpu(c_r, c_c, n);

22 pthread_mutex_unlock (&myMutex); }

23 elseif (n < th_cpu) {

24 mm_sub_cpu(c_r, c_c, n)};

25 elsef

26 // Compute the indices of the first element

27 // of each submatrix of C

28 int param[4][2] = {

29 {c_r, c_c},

30 {c_r, c_c + n/2},

31 {c_r + n/2, c_c},

3 {c_r + n/2, c_c + n/2}};

33 block_para(param, n/2, 0, 4);}

34 }

35 | worker block_para(int (xparam)[2], int n, int i1, int 1i2)

36 {

37 do_many for i from il to i2 // parallel loop

38 block_recursive_mm(param[i] [0],param[i] [1],n/2);
39 handles tmm from jl1 to j2

40 //put part (performed before sending a task)

41 { this.param = param;

42 this.n = n;

43 this.il = j1;

44 this.i2 = j2; '} // end of do_many

45 |}
46 | // GPU-oriented function

47 | void mm_sub_gpu(int c_r, int c_c, int n) {

48 double xa = &A[c_r][0], *b = &T_B[c_c][0];

49 double *mm = (double x)malloc(sizeof (double) * n

50 * n);
51 dgemm_ ("T", "N", &n, &n, &N_Z, 1.0, b, &N_Z, a,

52 &N_7Z, 0.0, mm, &n);
53 // Update matrix C

54 for (1 = 0; 1 < n; i++)

55 for (j = 0; Jj < n; j++)

56 Cli + c_r][j + c_c] = mm[i « n + J];

57 free (mm) ;

58 }

59 | //CPU-oriented function

60 | void mm_sub_cpu(int c_r, int c_c, int n);{

61 for (1 = 0; 1 < n; 1i++)

62 for (3 = 0; J < n; j++)

63 Clit+c_r][j+c_c] =

4 Sy Ali 4 c_r][k] * T_B[j + c_c][k];

Fig. 4: Tascell Program for Recursive Block Matrix Multipli-
cation (with GPU).

Currently, GPGPUs have demonstrated the high efficiency for
stencil computations, thanks to their ability to handle parallel
operations and manage memory effectively [21].

3) Mandelbrot Set Calculations: The Mandelbrot Set is
a fascinating mathematical object, known for its intricate and

beautiful fractal patterns [17]. The Mandelbrot Set M consists
of all complex numbers ¢ such that the sequence defined by
the iterative function

fo(2) =22 +c

starting from z = 0 does not diverge to infinity. In other words,
c is in the Mandelbrot Set if the iteration

2
Zny1 =%, tc

remains bounded for all n > 0. The Mandelbrot Set is typically
visualized in the complex plane. For each point ¢ in the
complex plane, the iterative process is performed to check
if the magnitude of z,, grows without bound. Points where z,
remains bounded are colored differently to represent the set.

B. Proposed Implementation

To enable Tascell to effectively utilize the computational
power of CPU-GPU hybrid environments, we wrote both CPU-
oriented and GPU-oriented code, each of which any worker
can execute selectively. A worker executes GPU-oriented code
under two conditions: when its assigned task size is within
a predetermined range, and when the GPU is not currently
utilized by another worker. If either of these conditions is not
met, the worker executes CPU-oriented code.

In the following sections, we detail the implementations
for the three applications based on this approach.

1) Recursive Block Matrix Multiplication: Figure 4 shows
an enhanced Tascell program based on the program in Fig-
ure 2, modified to utilize both CPU and GPU resources.
In this program, The parameters thl and th2 serve as
thresholds governing the execution of GPU-oriented code,
whereas th_cpu functions as a threshold controlling task
granularity.

Let us consider the execution when a worker calls the
block_recursive_mm function is called to compute the
product of two submatrices of size nxn. As shown in
lines 19 to 22, the worker calls the mm_sub_gpu func-
tion to perform matrix multiplication on GPU when the
matrix dimension n satisfies thl1<n<th2 and the GPU
is not being used by other workers. GPU exclusivity con-
trol is implemented using pthread mutex. Specifically, a
worker calls pthread_mutex_trylock to check avail-
ability and acquire the GPU ownership if available, and calls
pthread_mutex_unlock to release the ownership. The
thresholds th1 and th2 should be set to optimize resource
utilization. Specifically, thl is set to avoid the execution of
small tasks on GPUs. The threshold th2 is set to maintain an
adequate computational load for other workers, to prevent CPU
resources from becoming underutilized. Note that all workers
are capable of performing GPU-oriented code as long as only
one worker uses the GPU at a time.

— 62—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

When the condition th1<n<th?2 is not met, the worker
(recursively) divides the given computation into four sub-
computations if n is larger than the threshold th_cpu. Other-
wise, the worker executes the computation on a CPU core by
invoking the mm_sub_cpu function. Here, th_cpu should
be set considering the trade-off between task granularity and
the overhead of task division.

The function mm_sub_cpu employs a naive matrix mul-
tiplication algorithm, which uses triply nested for loops.

For GPU-oriented code, we used the NVBLAS li-
brary [18], which is provided by NVIDIA and offers GPU-
optimized implementation of the Basic Linear Algebra Sub-
programs (BLAS). We used the NVBLAS library as a drop-in
replacement for CPU-based BLAS libraries, which enables us
to leverage GPU acceleration with minimal adjustments.

Additionally, NVBLAS allows configuration through en-
vironment variables and a configuration file, providing
users with effective control over GPU offloading. Specifi-
cally, adding NVBLAS_GPU_DISABLED_DGEMM=1 in the
nvblas.conf file disables the DGEMM operation from ex-
ecuting on the GPU, thus facilitating CPU-only execution.
Conversely, by default, NVBLAS allocates the computational
workload between the CPU and GPU based on hardware
configuration and task size. In our implementation, however,
we aim to maximize performance by directing larger tasks to
the GPU-oriented functions. Consequently, NVBLAS consis-
tently utilizes the GPU in the mm_sub_gpu function, thereby
optimizing overall performance.

In the peformance evaluations in the next section, we
compare the performance among CPU-only, GPU-only, and
hybrid CPU-GPU executions. Depending on the execution
settings, we adjusted the Tascell program and the environment
variable NVBLAS_GPU_DISABLED_DGEMM as follows:

o For CPU-only executions, we activated
NVBLAS_GPU_DISABLED_DGEMM and removed
the pthread_mutex_trylock call in Figure 4.

o For GPU-only and hybrid CPU-GPU executions, we
deactivated NVBLAS_GPU_DISABLED_DGEMM.

Notably, in CPU-only executions, all computations are
executed in the mm_sub_gpu function using NVBLAS on
CPU cores. In GPU-only executions, all computations are
executed in the mm_sub_gpu function with NVBLAS ac-
celerated by the GPU. In hybrid executions, large tasks are
executed employing the mm_sub_gpu function with GPU-
accelerated NVBLAS, while smaller tasks are handled in the
mm_sub_cpu function with the naive CPU algorithm.

2) 5-pooint 2D Stencil Computations and Mandelbrot Set
Calculations: The code structures and workflows for 2D
stencil computations and Mandelbrot Set calculations closely
resemble those used for recursive block matrix multiplication.

0 N U AW —

11
12
13
14
15
16
17

// GPU Operations with OpenACC
void gpu_task (void Parameters) {
// In <caluse>, data regions to be copied to and
// from the GPU are specified.
#pragma acc data <clause>
{ //parallelize the nested loops on the GPU.
#pragma acc parallel loop
for (---) |

b1}

// CPU Operations

void cpu_task (void Parameters) {
// Allow for SIMD vectorization of the inner loop.
#pragma omp simd
{ for (---){

Fig. 5: CPU- and GPU-oriented Code Written in 2D Stencil
Computations and Mandelbrot Set Calculations.

The both applications achieve parallelization by recursively
dividing the space and assigning independent ranges to each
worker. Similar to matrix multiplication, the choice between
GPU execution and CPU execution is made based on the size
of the assigned space.

The key difference is that 2D stencil computations and
Mandelbrot Set calculations utilize a combination of Open-
ACC for GPU acceleration and SIMD (Single Instruction,
Multiple Data) for CPU optimization. As shown in Figure 5,
directive-based approaches such as OpenACC and SIMD
provide compiler directives that facilitate the offloading of
computations to accelerators and the vectorization of loops.
This approach ensures efficient execution of these tasks across
heterogeneous computing environments.

In the 5-point stencil computations, we adopted the tem-
poral blocking technique for both CPU and GPU implemen-
tations. To illustrate this with the GPU computation, consider
calculation on an area of size n? using the temporal blocking
technique with the blocking depth D. A worker transfers an
area of size (n +2D)? from host memory to the GPU, which
includes the computation target and a halo region of width
D. The GPU then executes D time steps of computation
on the target area. Subsequently, the computation results are
transferred back from the GPU to host memory. This approach
not only enhances data locality but also reduces the frequency
of data transfers between the host and GPU.

IV. PERFORMANCE EVALUATION
A. Evaluation Setup

This section provides the performance evaluation of the
three applications: recursive block matrix multiplication, 2D
stencil computations, and Mandelbrot Set calculations. We
conducted experiments and analyzed the performance on both
high-performance and workstation-grade platforms provided
by Academic Center for Computing and Media Studies at

— 63—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

TABLE I: Hardware Specifications of the High-Performance
Platform.

| DELL PowerEdge XE8545 (Gardenia)

CPU AMD EPYC 7513, 32 cores 2.6 GHz x 2
Memory | DDR4-3200 512 GB x 16
GPU NVIDIA A100 80 GB SXM x 4¢

+ 80 GB x 4 of HBM2e (High Bandwidth Memory 2e)

“Although this hardware is equipped with four GPUs, we used only one
GPU for the experiments in this study.

TABLE II: Hardware Specifications of the Workstation-Grade
Platform.

| Visualization node 1 (gp - 001)

CPU Intel Xeon Gold 6140 2.30 GHz (18 cores) x 2

available cores for each user is limited to 4.
Memory | DDR4-2666 720 GB
GPU NVIDIA Quadro P4000 (8 GB GDDRS5 SDRAM) x 2

available GPUs for each user is limited to 1.

TABLE III: Software Environment (common to both evalua-
tion environments).

‘ Software on hybrid CPU-GPU environment
oS Red Hat Enterprise Linux 8

Compiler Tascell: Tascell Compiler version of Jan. 21, 2019
+ NVC 23.9 with -O3 -acc=gpu -mp -march=native options
+ CL-SC implementation of nested functions [22]
OpenACC | OpenACC 2.6
OpenMP OpenMP 5.0
CUDA CUDA 12.2.2

Kyoto University. The high-performance platform is a single
node of the Gardenia supercomputer, while the workstation-
grade platform is provided as a visualization server. The details
of the platforms are summarized in Tables I and II. The
software environment is shown in Table III. All experiments
were performed in a single node. The detailed parameters
setting and description for each application have been shown
in Table IV.

B. Evaluation Results

In the performance results shown in Figures 6, 7 and 8,
of CPU workers indicates the number of workers that can
use CPU cores simultaneously. The legends w/ GPU and w/o
GPU denotes whether an additional worker for using a GPU
alongside those using CPU cores. For instance, in Figure 6a,
the line marked with w/ GPU indicates the performance when
a GPU is used. Note that when the number of CPU workers
is 0, it indicates an execution with only 1 worker, which
means a GPU-only execution. When # of CPU workers is 8, it
indicates an execution with 9 workers, where any worker has
the potential to use the GPU but only one worker is permitted
to do so at a time, while the remaining 8 workers can use
CPU cores for their computations.

407 -= w/GPU
o 30~ w/o GPU
[0
£
§ 204
5
[}
2
X 104

0 1 2 4 8 16 32 64
of CPU workers

(a) Performance of recursive block matrix multiplication with
and without GPU on the high-performance platform.

100 -
- w/GPU
% 80 w/o GPU
o
£ 604
c g 5 =
K]
5 404
[&]
Q
x
w 204
0 1 1 1 1 1
0 1 2 4 6 8

of CPU workers

(b) Performance of recursive block matrix multiplication with
and without GPU on the workstation-grade platform.

Fig. 6: Evaluation Results of Recursive Block Matrix Multi-
plication.

We executed the programs five times for each measurement
setting and present the result whose execution time is the
median.

1) Recursive Block Matrix Multiplication: From the Fig-
ure 6a, we can observe that the execution time for CPU-only
tasks with a single worker is 30.98 s. By increasing the number
of workers to 64, the execution time decreases to 1.843s,
achieving a speedup factor of 16.81 on the high-performance
platform. In the GPU-only execution (0 CPU workers and
w/ GPU), the computation will be offloaded entirely to the
GPU. Its execution time is 0.6245 s, which surpasses the best
execution time achieved with a hybrid approach, which is
0.9540's using one CPU worker.

As shown in Figure 6b, on the workstation-grade platform,
speedups of CPU-only execution program improve with the
number of workers up to 6, because the number of available
CPU cores for each user is limited to 4. The execution time
improved from 90.41s with one worker to 29.83s with 6
workers, resulting in a speedup of 3.03 times. In the executions
with GPU, the execution time of the hybrid execution with 4
CPU workers is 50.72 s, which is 1.873 % faster than the exe-
cution time of the GPU-only execution (51.68 s). Additionally,

64—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

TABLE IV: Parameters for Different Applications on both platform

Application ‘ Parameter

| Description

Matrix size N

Recursive Block

Matrix Multiplication thi,th2, th_cpu

81922 on the high-performance platform; 163842 on the workstation-grade platform.

th2 = N for GPU-only executions and th2 = N/2 for hybrid executions. For other parameters, we
conducted optimal parameter search and took the best setting for each configuration. For instance,
we used (thl,th_cpu) = (8,4) for executions with GPU and 64 CPU workers on the high
performance platform.

Grid size N
total time steps 17T
5-point 2D Boundary conditions
Stencil Computations We
thi, th2, th_cpu, D

1000

tuned these

81922 cells, each containing a double-precision floating-point value

Dirichlet boundary condition

parameters as in
(th1,th2,th_cpu, D) = (0, 4096, 1024, 250) for executions with GPU and 64 CPU workers on
the high performance platform.

matrix multiplication. For instance, we used

width X height 8000 x 8000
Maximum # iterations [T

Mandelbrot Set Region of interest r

50000 iterations for each cell

The region [—2.5,1.5] x [—2.0,2.0] on the complex plane.

We tuned these parameters as in matrix multiplication. For instance, we used (th1,th2, th_cpu) =
(4,2000, 4) for executions with GPU and 64 CPU workers.

Calculations
thl,th2,th_cpu
-= w/GPU, w/ tb
1507
w/o GPU, w/ tb
@ -&- w/ GPU, w/o tb
_GE_J 100 1 w/o GPU, w/o tb
R
5 A3
2 50 g
L S .
o—1—r—r—1r—1r—
0 1 2 4 8 16 32 64
of CPU workers

(a) Performance of 2D stencil computation on the high-
performance platform.

-= w/GPU, w/ tb

300
w/o GPU, w/ tb

@ ™. -A- w/ GPU, w/o tb
g 200+ w/o GPU, w/o tb
c
o A
£ -3
2 100
x L3 - &
i

0 1 2 4 6 8
of CPU workers

(b) Performance of 2D stencil computation on the workstation-
grade platform.

Fig. 7: Evaluation Results of 2D Stencil Computations.

CPU-only execution with 6 workers outperforms both hybrid
and GPU-only executions. This may be because, in CPU-only
execution, all workers can executte DGEMM operations in
parallel on the CPUs, whereas in hybrid execution, only one
worker can access the GPU to execute DGEMM operations
while the other workers use a less efficient naive algorithm.

2) 5-Point 2D Stencil Computations: Figure 7 presents
comparisons of performance both with and without GPU
utilization, as well as with and without the application of the
temporal blocking technique (denoted as w/ and w/o tb in the
figures). On both platforms, temporal blocking significantly
improves the performance. On the high-performance platform,
we achieved a 47.15-fold speedup in GPU-only executions, a
28.39-fold speedup in hybrid executions using 2 CPU workers,
and a 9.76-fold speedup in CPU-only executions with 64
workers. On the workstation-grade platform, we achieved
a 19.18-fold speedup in GPU-only executions, 10.93-fold
speedup in hybrid executions involving 2 CPU workers, and
5.31-fold speedups in CPU-only executions with 64 workers.
Moreover, Figure 7a demonstrates that the performance of
CPU-only execution improves significantly with up to 16
workers, beyond which the performance gain diminishes.

In the two graphs of Figure 7, we focus on the implemen-
tations using temporal blocking to compare the performance
with and without GPU utilization. On the high-performance
platform, the performance in CPU-only executions rise with
the number of workers, reaching a 15.04-fold speedup with 64
workers, where the execution time is 2.542s. In comparison,
the execution time of GPU-only execution is 1.898 s, which is
approximately 17.35 % faster than the best hybrid execution
time (2.297 s with 2 CPU workers) and also 25.3 % faster than
the CPU-only execution with 64 workers. On the workstation-
grade platform, compared to the single CPU-core execution,
we obtained a 3.54-fold speedup in the CPU-only execution
with 6 workers, where the execution time is 15.11s. The best
hybrid execution time is 11.31s, which is achieved with 5
CPU workers. The GPU-only execution time is 12.98 s. Thus,
the hybrid CPU-GPU execution achieved performance gains
of 12.85% over the GPU-only execution and 25.19 % over
the CPU-only executions for the 2D stencil computation.

3) Mandelbrot Set Calculations: We conducted the perfor-
mance evaluations only on the high-performance platform for

—65H—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

15004
w/o GPU

10004

500+

Execution time [s]

OIIIIIII
o 1 2 4 8 16 32 64

of CPU workers

(a) Performance for Mandelbrot Set Calculations in CPU-only
executions.

-= w/GPU
1'6-“\._.,__._4,/4.—.—!
2124
o
£
& 0.8+
=
[S]
2 0.4
3o
0.0 T T T T T T 1
0 1 2 4 8 16 32 64

of CPU workers

(b) Performance for Mandelbrot Set Calculations in GPU-only
and hybrid executions.

Fig. 8: Evaluation results for Mandelbrot Set Calculations on
the high-performance platform.

Mandelbrot Set calculations. Figure 8a shows the performance
of CPU-only executions. The execution time decreases notably
from 1144 s to 27.38 s as CPU workers increase from 1 to 64,
achieving a 41.8-fold speedup. The graph confirms that this
speedup demonstrates effective parallelization, with substantial
computation time reduction and efficient scaling in a CPU-
only environment. As depicted in Figure 8b, the execution time
with GPU, including hybrid configurations, is considerably
lower than that for the CPU-only executions. The execution
time of the GPU-only execution is 1.539s. In the hybrid
executions, while the addition of CPU workers leads to a
slight increase in execution times, the overall performance still
generally exceeds that of the GPU-only execution. Specifically,
when one CPU worker is employed, the hybrid execution
achieved an execution time of 1.460 s, which is 5.170 % faster
than the GPU-only execution and 94.67 % faster than the best
CPU-only execution.

C. Analysis and Discussion

1) Effectiveness of GPU Utilization: Adding a GPU sig-
nificantly cuts execution time across various applications.
This is particularly clear in the stencil computations and
the Mandelbrot Set calculations, as shown in Figures 7 and
8, where parallelism can be effectively exploited by the

GPU. However, recursive block matrix multiplication on the
workstation-grade platform is an exception, since all workers
in CPU-only execution benefit from the NVBLAS library, as
noted in Section III-B1.

2) Hybrid Execution Efficiency: Combining CPU and
GPU resources through hybrid execution methods often leads
to the best performance in certain environments, particularly
for irregular applications. The stencil application, for example,
performs best with hybrid execution on the workstation-
grade platform. For the Mandelbrot Set calculations, which is
considered as an irregular application, adding CPU workers to
GPU computation maximizes the utilization of computational
resources and achieves the best results. This demonstrates that
effective workload distribution between the GPU and CPU on
hybrid environments is achieved on Tascell framework.

3) Impact of Hardware Environment and Application
Characteristics: In workstation-grade heterogeneous systems
with GPUs of lower performance, CPU-GPU hybrid execu-
tions can effectively utilize the CPU’s computational power
to improve performance. In high-performance heterogeneous
systems with GPUs of higher performance, the advantages
of hybrid execution may be overshadowed by the efficiency
of single-GPU execution. Nevertheless, for irregular computa-
tions like the Mandelbrot Set calculations, hybrid executions
can still achieve superior performance with strong GPUs.
Overall, while GPU-only executions are often preferable on
high-performance platforms, hybrid executions remain valu-
able for specific systems or applications that benefit from the
combined strengths of CPUs and GPUs.

V. RELATED WORK

In heterogeneous scheduling, a common approach is the
use of task schedulers, where the problem is divided into tasks
represented as a directed acyclic graph (DAG) based on their
dependencies. This DAG is passed to a runtime system that
monitors performance and assigns tasks to different processing
units. Several advanced systems use this method. For example,
StarPU [23] is a task-based runtime system that schedules
tasks across heterogeneous resources, including CPUs and
GPUs. It utilizes a shared task pool, where tasks are accessible
by both CPUs and GPUs. Systems like Halide [24] and
Legion [25] also follow this approach, with Halide managing
tasks via the host thread and Legion using a shared task pool.
These systems have been applied to practical problems like
image processing, fluid simulation, etc.

Previous research on hybrid CPU-GPU computing has
explored various frameworks and techniques to improve per-
formance and resource utilization. For example, [26] reviewed
cooperative CPU-GPU computing systems, highlighting task
allocation schemes and runtimes that enhance collaborative
execution but also pointed out issues like workload imbalance
and performance overhead. In another study, [27] focused

— 66—

Bulletin of Networking, Computing, Systems, and Software — www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 58—67, January 2025

on hybrid CPU-GPU systems for applications like Sparse
Matrix-Vector Multiplication (SpMV), optimizing for irregular
workloads in heterogeneous systems. Despite these advances,
many frameworks struggle to manage dynamic task paral-
lelism effectively, particularly in hybrid systems. Distributing
tasks generated at runtime and handling irregular workloads
is challenging due to GPUs’ preference for uniform work
distribution, which can cause inefficiencies with dynamic or
irregular tasks [28].

VI. CONCLUSIONS

In this paper, we propose a method in Tascell that op-
timizes the use of hybrid CPU-GPU systems by enabling
workers to handle both CPU-oriented and GPU-oriented tasks,
dynamically allocating GPU tasks based on size and avail-
ability. This approach is applied to three applications: re-
cursive block matrix multiplication, 2D stencil computations,
and Mandelbrot Set calculations. Our evaluation shows that
the hybrid approach offers significant performance gains on
the workstation-grade CPU-GPU platform, achieving up to
12.85 % and 25.19 % improvements for 2D stencil computa-
tions over GPU-only and CPU-only executions, respectively.
For Mandelbrot Set calculations, which involve irregular com-
putations, the hybrid method leads to up to 5.17 % and 94.67 %
gains over GPU-only and CPU-only executions, respectively,
on the high-performance platform.

This proposal investigates the feasibility and performance
of combining GPU parallel computing power with Tascell’s
dynamic load balancing to fully utilize the resources of hybrid
CPU-GPU systems. It provides a reference for efficiently
parallelizing large-scale, complex, and irregular applications.
This study successfully demonstrates Tascell’s potential for
fully utilizing hybrid systems. Future research will focus on
integrating GPU support directly into the Tascell framework to
further enhance its capabilities and optimize GPU resource uti-
lization. Exploring applications where the proposed approach
works more effectively is also future work.

REFERENCES

[1] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. Gpu computing. Proceedings of the IEEE,
96(5):879-899, 2008.

Sparsh Mittal and Jeffrey S Vetter. A survey of methods for analyzing
and improving gpu energy efficiency. ACM Computing Surveys (CSUR),
47(2):1-23, 2014.

John Nickolls and William J Dally. The gpu computing era. /[EEE micro,
30(2):56-69, 2010.

David B Kirk and W Hwu Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. Computing
in science & engineering, 12(3):66, 2010.

Marco Aldinucci, Valentina Cesare, Iacopo Colonnelli, Alberto Riccardo
Martinelli, Gianluca Mittone, Barbara Cantalupo, Carlo Cavazzoni, and
Maurizio Drocco. Practical parallelization of scientific applications
with openmp, openacc and mpi. Journal of parallel and distributed
computing, 157:13-29, 2021.

2

—

—
©

[4

=

[5

=

[6

=

[7]

[8]

[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

— 67—

Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using
OpenMP: portable shared memory parallel programming. MIT press,
2007.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
portable parallel programming with the message-passing interface,
volume 1. MIT press, 1999.

David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang.
Heterogeneous computing with OpenCL 2.0. Morgan Kaufmann, 2015.
NVIDIA Corporation. cublas library. https://docs.nvidia.com/cuda/
cublas/, 2023. Accessed: 2024-08-05.
NVIDIA Corporation. cudnn library.
cudnn/, 2023. Accessed: 2024-08-05.
Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao.
Dynamic load balancing on single-and multi-gpu systems. In 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
pages 1-12. IEEE, 2010.

Juan Fang, Jiaxing Zhang, Shuaibing Lu, and Hui Zhao. Exploration on
task scheduling strategy for cpu-gpu heterogeneous computing system.
In 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 306-311. IEEE, 2020.

Shuai Zhang, Tao Li, Qiankun Dong, Xuechen Liu, and Yulu Yang.
Cpu-assisted gpu thread pool model for dynamic task parallelism. In
2015 IEEE International Conference on Networking, Architecture and
Storage (NAS), pages 135-140. IEEE, 2015.

Nadeem Shah and Mohammed Farik. Static load balancing algorithms
in cloud computing: challenges & solutions. International Journal of
Scientific & Technology Research, 4(10):365-367, 2015.

Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.
Backtracking-based Load Balancing. In Proc. 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’09, pages 55-64, 2009.

Bodil Branner. The mandelbrot set.
volume 39, pages 75-105, 1989.
NVIDIA Corporation. Nvblas library. https://docs.nvidia.com/cuda/
nvblas/, 2024. Accessed: 2024-08-05.

Matteo Frigo, Charles E Leiserson, and Keith H Randall. The imple-
mentation of the cilk-5 multithreaded language. In Proceedings of the
ACM SIGPLAN 1998 conference on Programming language design and
implementation, pages 212-223, 1998.

Eric Mohr, David A Kranz, and Robert H Halstead Jr. Lazy task
creation: A technique for increasing the granularity of parallel programs.
In Proceedings of the 1990 ACM Conference on LISP and Functional
Programming, pages 185-197, 1990.

Andreas Schifer and Dietmar Fey. High performance stencil code
algorithms for gpgpus. Procedia Computer Science, 4:2027-2036, 2011.
Tasuku Hiraishi, Masahiro Yasugi, and Taiichi Yuasa. A Transformation-
Based Implementation of Lightweight Nested Functions. IPSJ Trans.
Programming, 47(SIG 6(PRO 29)):50-67, 2006.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. Starpu: a unified platform for task scheduling on heteroge-
neous multicore architectures. In Euro-Par 2009 Parallel Processing:
15th International Euro-Par Conference, Delft, The Netherlands, August
25-28, 2009. Proceedings 15, pages 863-874. Springer, 2009.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices, 48(6):519-530, 2013.
Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: Expressing locality and independence with logical regions. In
SC’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1-11. IEEE,
2012.

Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous
computing techniques. ACM Computing Surveys (CSUR), 47(4):1-35,
2015.

Wangdong Yang, Kenli Li, and Keqin Li. A hybrid computing method of
spmv on cpu—gpu heterogeneous computing systems. Journal of Parallel
and Distributed Computing, 104:49-60, 2017.

John Owens. Gpu architecture overview. In ACM SIGGRAPH 2007
courses, pages 2—es. Association for Computing Machinery, 2007.

https://docs.nvidia.com/cuda/

In Proc. symp. appl. math,

