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Abstract—In the pursuit of realizing a quantum computer 

through quantum gating, generating a Schrödinger’s cat state 

that is robust against noise and decoherence presents a 

significant challenge. Recent studies have explored deep 

reinforcement learning methods; however, the results often fail 

to accurately reflect the state of the quantum system due to 

quantum back-action during the observation process. In this 

study, we propose a novel approach for quantum state 

generation that integrates particle filters with deep 

reinforcement learning. The particle filter estimates the 

quantum system's state based on observed results and 

subsequently provides feedback to the reinforcement learning 

agent. We compare our current findings on generating 

Schrödinger's cat state with previous results derived from deep 

reinforcement learning techniques. 

Keywords—Quantum State Generation, Deep Reinforcement 

Learning, Particle Filter 

 

I. INTRODUCTION 

A. Background 

The advancement of quantum computing based on 
quantum gates hinges on overcoming several critical 
challenges. One of the foremost requirements is the generation 
of a ground state that is resilient to noise and decoherence 
from the environment, serving as the initial state for 
computation [1-3]. However, in practical physical systems, 
noise and decoherence are inevitable. As a result, 
implementing effective feedback control based on real-time 
monitoring of quantum systems has become essential [4].  

 Traditional optimal control techniques have proven 
effective in linear, unitary, and deterministic systems. 
However, modeling nonlinear quantum systems remains a 
significant challenge, and currently, no general methods are 
available to address these complex dynamics [6,27,41-47]. 
Recently, model-free approaches based on deep reinforcement 
learning (DRL) have gained attention, as they allow control 
strategies to be learned directly from data patterns generated 
by the system, without the need for an explicit physical mode 
[14].  

 Nevertheless, conventional DRL frameworks face 
considerable difficulties when applied to quantum systems, as 
these systems exhibit nonlinear and stochastic time evolution 
due to quantum back-action induced by continuous 
observation.  

 To address these challenges, this study combines DRL 
with particle filtering to achieve the ground state within a 

double-well potential system. Our approach overcomes these 
difficulties by employing particle filtering to estimate the 
quantum system's state in real time, followed by the heuristic 
application of DRL to develop an optimal control policy that 
maintains the desired state. 

  

B. Related Works 

 Numerous applications of deep reinforcement learning 
(DRL) have emerged in the quantum domain, encompassing 
areas such as quantum control [7,15-17], quantum state 
preparation and engineering [18-22], state transitions [23-25], 
and quantum error correction [26,27]. While research utilizing 
DRL is on the rise, very few studies have explicitly considered 
the use of continuous measurement outcomes for training 
DRL agents [7,19,26]. A notable contribution that addresses 
this gap is the work by Borah et al. [14], which investigates 
measurement-based feedback quantum control through deep 
reinforcement learning in a double-well nonlinear potential. 
This study underscores the effectiveness of continuous 
measurement results in enhancing the training of DRL agents 
for quantum control applications [14]. 

C. Our Results 

In this study, we develop and analyze a deep 

reinforcement learning (DRL) framework integrated with a 

particle filter to achieve high-fidelity quantum state control 

under continuous measurement feedback within a nonlinear 

double-well potential system. In this framework, we choose 

the coherence state with an inverse temperature parameter 

𝛽 = 1 as the initial state, and the DRL agent learns an optimal 

control strategy to generate the ground state, specifically 

targeting the Schrödinger's cat state. By varying the particle 

count in the particle filter, we investigate the impact of 

particle number on the accuracy and stability of quantum 

state estimation and control. 

Our extensive simulations demonstrate that a higher 

particle count significantly enhances both fidelity and reward 

stability, enabling the DRL agent to effectively learn and 

maintain a robust control strategy. Specifically, a particle 

count of 𝑁 = 40 consistently achieves stable, high-fidelity 

control, whereas lower particle counts (𝑁 = 10 and 𝑁 = 20) 

lead to noticeable performance fluctuations, highlighting 

challenges in achieving reliable state estimation and control 

with fewer particles. 

Future work is anticipated to explore more complex initial 

states to broaden the applicability of this approach. Our 
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findings emphasize the critical role of particle count in 

quantum control systems. 
 

II. METHODS 

In this study, we model the quantum evolution of a 

quantum particle within a double-well (DW) potential using 

a stochastic master equation (SME) to describe the dynamics. 

Continuous measurement at a rate Γ on the operator 𝑥2  is 

applied to prevent the wave function from localizing in either 

well due to even parity [28]. This continuous measurement 

induces quantum back-action, introducing noise that affects 

both the conditioned quantum dynamics and the observed 

measurement data, ultimately preventing an accurate 

reflection of the quantum system’s state ( 𝜌(𝑡 + 1)𝑖𝑛𝑐. , 

𝑑𝑄(𝜌(𝑡 + 1)𝑖𝑛𝑐.)). To obtain a precise state 𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟. of 

the quantum system, we estimate the state using a particle 

filter (𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.
est ), and feedback this estimated information 

(𝑑𝑄(𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.
est )) to a deep reinforcement learning (DRL) 

agent. The DRL agent controls the quantum dynamics 

through modulation of the Hamiltonian 𝐻′(𝑡) = 𝐻 + 𝐹(𝑡), 

where 𝐹(𝑡) = 𝒜(𝑡)(𝑥𝑝 + 𝑝𝑥) , with 𝑥  and 𝑝  being 

dimensionless canonical operators, and 𝒜(𝑡)  representing 

the strength of the squeezing operator modulated by the DRL 

agent. The DRL agent is trained via the continuous 

measurement current and acts on the system in real time 

through 𝐹(𝑡). A diagram of the DRL model used in this study 

is shown in Figure 1(a). 

 

 
Fig. 1. Overview of the DRL-Based Quantum Control 

Framework 

 

A. Environment 

 This model uses dimensionless position and momentum 
variables (𝑥, 𝑝), which relate to physical position and 
momentum as 𝑥 = 𝑄 𝑄0⁄  and 𝑝 = 𝑃 𝑃0⁄ , where 𝑄0 and 𝑃0 
are scaling factors for position and momentum. The 

canonical commutation relation is [�̂�, �̂�] = 𝑖ℏ, resulting in 

[�̂�, �̂�] = 𝑖�̅�, where the dimensionless Planck constant is 
given by �̅� =  ℏ (𝑄0𝑃0)⁄ . The DW potential we consider is 
aligned along the x-axis and characterized by the quantum 
particle’s Hamiltonian: 

𝐻 = 
𝑝2

2
+ 

ℎ

𝑏4
[(𝑥 − 𝑎)2 − 𝑏2]2 (1) 

where 𝑏 indicates the position of the well minima, ℎ is the 
height of the barrier between the wells, and 𝑎 is the offset 
along 𝑥 . Parameters are set as 𝑎 = 0 , 𝑏 = 3 , and ℎ = 5 , 
creating a symmetric potential around the origin at 𝑥 = 0. The 
ground state represented by this Hamiltonian 𝐻 is an even-
parity “cat state” due to symmetry in 𝑥 and 𝑝, while the first 
excited state has odd paritytem’s conditioned density operator, 
𝜌(𝑡), evolves over time according to a quantum stochastic 
master equation(SME) [14] stochastic measurement record up 
to time 𝑡: 

SME: 𝑑𝜌(𝑡) = −𝑖[𝐻′, 𝜌]𝑑𝑡 + 𝒟[𝐴]𝜌𝑑𝑡 + ℋ[𝐴]𝜌𝑑𝑊(𝑡) (2) 

In this study, the initial state 𝜌(0) was set to a coherence state 
with an inverse temperature parameter 𝛽 = 1 . At the 
beginning of each episode, the environment is reset to the 
initial state, with the initial density matrix defined as 𝜌(0). 

Here, 𝐴 is a Hermitian observable operator under continuous 
measurement (known as the measurement operator), and 
ℋ[𝐴] and 𝒟[𝐴] are super-operators given by: 

ℋ[𝐴]𝜌(𝑡) = [{𝐴, 𝜌(𝑡)} − 𝑡𝑟({𝐴, 𝜌(𝑡)})]𝜌(𝑡) (3) 

𝒟[𝐴]𝜌(𝑡) =  
1

2
[2𝐴𝜌(𝑡)𝐴† − {𝜌(𝑡), 𝐴†𝐴}] (4) 

 In Equation (3), 𝑑𝑊(𝑡) represents the Wiener increment, 
a noise term introduced by continuous measurement with a 
mean of zero and variance 𝑑𝑡 . The measurement current 
𝑑𝑄(𝑡) is a classical stochastic process that satisfies an Itô 
stochastic differential equation: 

𝑑𝑄(𝜌(𝑡 + 1)𝑖𝑛𝑐.) = 

𝛾𝑔 (𝑡𝑟(𝐴(𝑡) ∙ 𝜌(𝑡 + 1)𝑖𝑛𝑐.)𝑑𝑡 +
1

√4Γ
𝑑𝑊(𝑡)) (5) 

where 𝑔 is a gain coefficient, inverse in units to 𝐴, and 𝑑𝑄(𝑡) 

has units of frequency. Here, 𝐴 = √Γ𝑥2 , with Γ  as the 
measurement rate, quantifying the quality of measurement. 
Since 𝑥  and 𝑝  are dimensionless, we set 𝛾𝑔 = 1 . For 
continuous cooling of the system to the ground state (cat state), 

we select the stochastic operator 𝐴 in Equation (3) as √Γ𝑥2. 

The time density operator calculated using Equations (2) 
and (5), along with weak measurement values, does not fully 
reflect the quantum state due to quantum back-action and 
noise ( 𝜌(𝑡 + 1)𝑖𝑛𝑐. , 𝑑𝑄(𝜌(𝑡 + 1)𝑖𝑛𝑐. )). Therefore, in this 
study, we estimate the precise state of the quantum system  
𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.  using a particle filter ( 𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.

est ), and 
feedback this information (𝑑𝑄(𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.

est ) to the DRL 
agent. The particle filter can adapt to nonlinear state-space 
models and non-Gaussian noise. By taking the difference 
between the filter particle state inferred from previous 
measurements and the current measurement values, we create 
a distribution of the noise present at the current time. 

𝑑𝑊(𝑖)(𝑡)  =  √4Γ (
𝑑𝑄(𝜌(𝑡 + 1)𝑖𝑛𝑐.)

𝛾𝑔
 − ⟨𝐴(𝑡)⟩𝑐

(𝑖)𝑑𝑡) (7) 

 Using the noise derived from Equation (7), we evolve the 
conditioned density operator over time according to Equation 
(3) and apply weights based on measurement values to 
estimate the quantum system state. 
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𝛼(𝑖)(𝑡) = 

1

√2𝜋𝜎2
exp

[
 
 
 
 𝑑𝑄(𝑡) − (⟨𝐴(𝑡)⟩𝑐

(𝑖)𝑑𝑡 +
1

√0.4
𝑑𝑊(𝑖)(𝑡))

2𝜎2

]
 
 
 
 

(8) 

𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.
est =

∑ 𝜌′(𝑖)(𝑡)𝛼(𝑖)(𝑡)𝑖

𝛼(𝑖)(𝑡)
 (9) 

 This expectation is then fed back to the DRL agent. 

𝑑𝑄(𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.
est )  =  𝑡𝑟(𝐴(𝑡) ∙ 𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.

est ) (10) 
𝑅𝑡+1 =  −|𝑑𝑄(𝜌(𝑡 + 1)𝑐𝑜𝑟𝑟.

est ) − 32| (11) 

 

B. DRL Agent 

In this study, we used a DRL agent based on Proximal 
Policy Optimization (PPO) combined with the Advantage 
Actor-Critic (A2C) framework. The PPO objective is 
optimizing a clipped surrogate loss function, 

ℒ(𝜃) =  �̂�𝑡(min{𝑟𝑡(𝜃)�̂�𝑡 , clip[𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖]}) (12) 

which is representing the probability ratio between current and 

previous policy actions, and �̂�𝑡  is the advantage function 
calculated by the critic. Limiting the clipping range to 𝜖 = 0.2 
prevents excessive updates, while the A2C framework enables 
parallel training environments, accelerating learning. 

Recent studies have investigated the application of deep 
reinforcement learning, especially robust algorithms like PPO 
for continuous state-action spaces, in quantum state 
generation and control. For instance, Borah et al. (2021) 
investigated continuous measurement-based feedback 
quantum control in double-well nonlinear potentials using 
PPO [14]. Kuo et al. (2021) introduced a quantum architecture 
search framework using PPO to generate gate sequences for 
multi-qubit GHZ states without prior knowledge of quantum 
physics [29]. Additionally, Zhu & Hou (2023) improved this 
approach with a trust region-based PPO method, achieving 
better policy performance and reduced execution time [30]. 
Chen & Xue (2019) demonstrated the effectiveness of PPO in 
spin-squeezed state preparation in a spin-1 atomic system, 
both in mean-field and quantum systems [31]. Moro et al. 
(2021) optimized digital pulse sequences for stimulated 
Raman adiabatic passage (STIRAP), achieving fast and 
flexible solutions for integer and fractional STIRAP [32]. 
These studies underscore the potential of PPO in quantum 
state generation, architecture search, and control optimization. 

In each training episode, the DRL interacts with the 
environment over 1000 discrete time steps at intervals of 𝑑𝑡 =
0.001, applying actions each time.  

During each interaction, the PPO agent adds the squeezing 
term 𝐹(𝑡) = 𝒜(𝑡)(𝑥𝑝 + 𝑝𝑥)  to the Hamiltonian [Equation 
(2)] and attempts to adjust 𝒜(𝑡) in the range 𝒜(𝑡) ∈ [−5, 5] 
to maximize the reward given by Equation (11). This choice 
of feedback is motivated by the physics of the problem and 
analyzed in detail through Bayesian control using the 
conditional mean of the measurement record, following 
Stockton et al. [13]. The 𝑥𝑝-type Hamiltonian terms can bed, 
for example, via quantum particle motion in a magnetic field 
[33]. 

 

III. RESULTS AND DISCUSSIONS 

This section discusses the simulation outcomes, 

focusing on the effectiveness of the proposed deep 

reinforcement learning (DRL) framework for quantum state 

estimation and control under various particle counts in the p 

article filter. The system's performance was evaluated using 

fidelity and reward metrics, which provide insight into the 

control strategy's accuracy and efficiency. 

 

 

Figure 2 shows the simulation results when the 

particle count 𝑁 is set to 40. This high particle count enables 

a fine-grained approximation of the quantum state, 

supporting the DRL agent's learning and control capabilities. 

In Figure 2(a), the average fidelity remains around 0.3 across 

episodes, exhibiting limited improvement over time. This 

suggests that while the DRL framework can stabilize the 

quantum state to a certain degree, it faces challenges in 

achieving higher fidelity necessary for precise ground-state 

preparation. The relatively constant fidelity indicates that the 

current control strategy maintains basic alignment with the 

target state but lacks the refinements needed to enhance state 

fidelity further. In contrast, Figure 2(b) shows a more 

pronounced improvement in the reward curve. The average 

reward increases steadily from 

approximately −0.06 to −0.04 during the initial 500 episodes 

before stabilizing. This increase in reward reflects the DRL 

agent’s learning process as it optimizes control actions based 

on continuous feedback, effectively balancing quantum back-

action and measurement noise. However, the divergence 

between the stabilized reward and the relatively static fidelity 

suggests that while the DRL framework succeeds in 

maintaining system stability, additional modifications may be 

required to enhance the fidelity metric, aligning the 

controlled state more closely with the desired quantum 

ground state. 

Figure 3 shows the simulation results when the 

particle count 𝑁 is set to 10 and 20. In Figure 3(a), we see the 

fidelity curves for both particle counts, with 𝑁 = 10 in green 

  
Fig. 2. Results with N=40 number of particles 

 (a). Average Fidelity Over Episodes  

(b). Average Reward Over Episodes 

 
Fig. 3. Results with N=10 and 20 number of particles 

 (a). Average Fidelity Over Episodes  

(b). Average Reward Over Episodes 

 

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 74–76, January 2025

– 76 –



and 𝑁 = 20  in orange. Unlike the results with 𝑁 = 40 , 

fidelity remains relatively low (around 0.3 to 0.34) and 

fluctuates significantly throughout the episodes, failing to 

reach a stable high-fidelity state. This instability suggests that 

lower particle counts limit the particle filter’s ability to 

accurately estimate the quantum state, thereby hindering the 

DRL agent's learning process and reducing control precision. 

Similarly, Figure 3(b) illustrates the reward curves for 𝑁 =
10 and 𝑁 = 20. Both curves show considerable volatility, 

with rewards remaining within the range 

of −0.075 to −0.05 throughout the episodes, without a clear 

upward trend or stable plateau. This result implies that the 

DRL agent struggles to maintain an effective control strategy 

with fewer particles due to lower estimation accuracy, as the 

particle filter provides insufficient information for the agent 

to learn an optimal policy. 

These findings highlight the critical role of particle 

count in achieving stable learning and effective control. 

Lower particle counts lead to unstable and suboptimal fidelity 

and reward, indicating that the DRL agent requires a higher 

particle count for accurate state estimation and reliable 

control. 

The results underscore both the potential and 

limitations of the proposed DRL-based quantum control 

framework. While increasing the particle count enhances 

reward stability and reduces fluctuations, the lack of 

improvement in fidelity suggests that further optimizations 

are necessary. This indicates that while the framework is 

effective in mitigating quantum back-action and noise, 

achieving high-fidelity state control may require adaptive 

filtering techniques or modifications to the DRL structure. 

Such enhancements could be critical for advancing the 

framework's precision in aligning the controlled state with the 

desired ground-state configuration. 
 

IV. CONSLUSION 

In this study, we introduced a DRL-based quantum 

control framework combined with particle filtering to address 

the challenge of quantum state control within a nonlinear 

double-well potential system under continuous measurement 

feedback. By varying the particle count in the particle filter, 

we demonstrated that a higher count (specifically 𝑁 = 40) 

improves the stability of the reward, allowing the DRL agent 

to maintain a consistent control strategy over time. However, 

the fidelity metric showed limited improvement, indicating 

that while the framework can stabilize the control process, 

achieving precise ground-state preparation remains a 

challenge. 

Our findings highlight the critical influence of 

particle count on the stability and performance of DRL-based 

quantum control systems. However, the limited increase in 

fidelity underscores the need for further refinement of the 

control methodology. Future research should explore 

adaptive particle filtering techniques and structural 

adjustments to the DRL framework to improve fidelity 

alignment with the target ground state. Additionally, 

investigating more complex initial states beyond the 

coherence state with an inverse temperature parameter 𝛽 = 1 

could extend the applicability of this approach, offering a 

more comprehensive understanding of the framework’s 

capabilities. Such advancements have the potential to 

enhance both computational efficiency and control accuracy 

in DRL-based quantum systems, paving the way for more 

robust applications in quantum computing and control. 
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