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Abstract—Reservoir computing (RC), traditionally based on
echo state networks and liquid state machines, shows great
potential in modeling dynamic time-series data like weather and
astronomical predictions. However, these frameworks are not
suitable for quantum dynamics-based RC. Tensor networks (TNs)
are well suited for modeling quantum dynamics because they
can efficiently model quantum information and entanglement.
In this work, we propose a novel randomized TN-based RC
scheme, demonstrating its validity through various case studies.
Our results show superior performance compared to traditional
ESN models, laying the groundwork for further exploration of
quantum reservoir computing.

Index Terms—Reservoir Computing (RC), Tensor Networks
(TN), Quantum Dynamics.

I. INTRODUCTION

A. Background

Reservoir computing (RC) has established itself as a pow-
erful approach for learning dynamic temporal data, primarily
through frameworks like echo state networks (ESNs) and
liquid state machines, where only the output weights are
trained, and internal weights remain fixed [1]–[13]. Traditional
RC, however, struggles with quantum dynamics due to limi-
tations in representing high-dimensional quantum information
and entanglement [14]–[17]. Tensor networks (TNs) provide
a promising alternative for quantum RC by enabling the
handling of complex quantum correlations and entanglement
[18]–[30]. By introducing randomized effects into TNs, akin
to the randomization in traditional RC, diverse quantum
correlation patterns are generated, resulting in robust and
generalizable quantum dynamic models [31]–[41].

B. Our results

In this study, we explore the TNRC approach for both static
data classification and time-series dynamic predictions, with
the following key findings:

1) The proposed TNRC method is computationally effi-
cient, avoiding the high computational costs typical of
traditional TN training.

2) Numerical calculations of IPC for time-series data show
scaling behavior near the edge of chaos, resembling
patterns observed in RC settings for digit classification.

3) Calculations indicate a universal normalized entangle-
ment entropy predicting phase boundaries across various
cases. Our research bridges the gap between traditional
RC frameworks and quantum dynamics, utilizing ran-
domized tensor networks to offer new insights into learn-
ability and phase transitions within complex quantum
systems.

Our research bridges the gap between traditional RC frame-
works and quantum dynamics, utilizing randomized tensor
networks to offer new insights into learnability and phase
transitions within complex quantum systems.

II. METHODS

A. Summary of Learning Architecture

The training dataset is denoted as D =
{
(x⃗[n], y⃗[n])

}m

n=1

where each input vector x⃗[n] =
(
x
[n]
1 , x

[n]
2 , . . . , x

[n]
N

)
∈

[0, 1]N ⊂ RN and m represents the dataset size, while N is
the input dimension. The output y⃗ = (y1, y2, . . . , y|c|) is one-
hot encoded for classification, determined as: yi = δi,k, k =

argmax
j∈c

∑L−1
l=0 Wj,lFl (x⃗) with Fl (x⃗) = σ(f (l) (x⃗)), where

σ (z) = 1
1+e−z is the logistic sigmoid, and W is the trainable

weight matrix.
The model utilizes a hybrid tensor-neural network with

tensor-based decision functions and feature maps. For image
input, the scikit-learn hand-written digit dataset [42]-[43]
(8x8 grayscale images) is serialized, resulting in N = 64
and MPS reservoir length N + 1 = 65. The class set for
output is c = {0, 1, . . . , 9}, and a quadratic loss is used for
training, with W obtained via Moore-Penrose pseudoinverse.
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The decision function f (l) (x⃗) is expressed as:

f (l)(x⃗) =

1∑
i1,i2,...,iN=0

Ψ
(l)
i1,i2,...,iN

ϕi1(x1)ϕi2(x2) · · ·ϕiN (xN )

(1)
where Ψ is approximated by a Matrix Product State (MPS)

as:
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Here, χ denotes the bond dimension, and A matrices
are randomly initialized from a Gaussian ensemble. MPS
length is N + 1, and basis functions for input encoding are
ϕ0 (x) = 1 − x and ϕ1 (x) = x. The MPS representation
reduces the parameter count to O(Nχ2L), making it an
efficient compression for high-rank tensors, as opposed to the
full representation of 2NL. During training, the MPS remains
fixed. Entanglement entropy S is calculated for the MPS in
mixed canonical form, normalized as S̃ = S/log2 χ ∈ [0, 1].
S̃ = 1 implies maximal entanglement, and S̃ = 0 indicates no
entanglement.

Tensor network reservoir computing
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Fig. 1. The data flow from input to output of TNRC.

B. Reservoir Computing and Information Processing Capacity
(IPC)

In this approach using reservoir computing for sequential
data learning, each 8×8 image is divided into four sections,
each containing 16 pixels. This transforms the image into
four time slices, with each slice providing a 16-dimensional
input vector uj(t) at time t ∈ {1, 2, 3, 4}. The iterative
function is defined as follows: Tl (xt, ζt) = σ(f (l) (x⃗t) +
ι
∑M

j=1 Win,l,juj(t)). The final output is determined by:
y = argmax

i∈c

∑N
l=1 Wout,i,lσ(f

(l) (x⃗t) + ι
∑M

j=1 Win,l,juj(t))

where M = 16, N = 64, and t = 4. Information Processing
Capacity (IPC) is a measure based on memory capacity,

evaluating how effectively the reservoir can model time-series
data [44]. A system in a stable or chaotic state has low IPC,
while a system at the edge of chaos has high IPC. For IPC
calculation, we used the code provided by [45]. The time series
is calculated using the transition function T : RN×R −→ RN

as follows: xt+1 = T⃗ (x⃗t, ζt) for uniformly distributed random
input signal ζt ∈ [−1, 1]. The transition function for tensor
network-based reservoir computing is given by: Tl (x⃗t, ζt) =
σ(f (l) (x⃗t) + ι Win,lζt) where the input weight vector Win

is randomly drawn from the interval [−1, 1], and a scaling
constant ι = 0.1 is set. This flow is shown in Fig. 1.

III. RESULTS AND DISCUSSIONS

A. IPC and Dynamic Data

The IPC analysis for time-series data demonstrates the
transition behavior as the system approaches the chaotic phase.
Using N = 64 for IPC calculation, Fig 2(a) shows that IPC
starts at a low value in the stable phase, rises to its theoretical
maximum Ctot = N near the edge of chaos, and declines
sharply as the system enters chaos. This phase transition
highlights the system’s stability and information-processing
capacity. Fig. 2(b) provides a detailed phase diagram, showing
that IPC reaches optimal values near the edge of chaos,
reinforcing the framework’s robustness across various datasets.
Additionally, Fig. 2(c) illustrates the phase transition using
handwritten digit data, confirming the adaptability of the IPC
framework across different input dimensions and datasets.

B. Entanglement Entropy of Randomized MPS Reservoirs

The entanglement entropy of the randomized MPS reser-
voir is examined to understand its relationship with model
performance. As the standard deviation σA of the Gaussian
ensemble increases, the entanglement entropy also increases.
Fig. 3(a) shows IPC plotted against the entanglement entropy,
with phase transition points occurring consistently at the same
entropy level across bond dimensions. Additionally, Fig. 3(b)
reveals that the normalized entanglement entropy and test
accuracy is observed for RC learning, with optimal fitting seen
within S̃ ∈ [0.1, 0.5]. The results suggest that higher entan-
glement does not necessarily improve learning performance,
aligning with known findings in quantum information theory
[46]-[47].
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a

b

Fig. 2. The IPC for 64-dimensional input-output time series and RC learning
data. (a) The IPC phase diagram (b) The phase diagram for the test accuracy
of RC learning.

IV. CONCLUSION

This article introduces and demonstrates the TNRC method,
validating its low-cost learning approach through a handwrit-
ten digit classification experiment. Empirical and theoretical
analyses reveal learnability phase transitions in the random
tensor reservoir, moving from underfitting to overfitting. The
order-to-chaos criticality in reservoir computing (RC) is nu-
merically evaluated using IPC and observed in time-sequence
data experiments, with theoretical insights explaining these
transitions. The entanglement entropy appears to play a role
in these phase transitions, and further investigation involving
higher moments may provide deeper insights.

Future work could explore TNRC applications in higher-
dimensional tensor networks, neural network reservoirs, or
other physical reservoirs. Applying TNRC to additional time-
series settings and examining why critical entanglement en-
tropy seems to be a universal constant remain open questions.
We plan to conduct further analyses on practical time-series

a

b

Fig. 3. (a) Test accuracy with respect to the normalized entanglement entropy
for various bond dimensions. (b) The total IPC is plotted with respect to the
normalized entanglement entropy S̃

data and develop theoretical boundaries.
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[2] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[3] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” science, vol.
304, no. 5667, pp. 78–80, 2004.

[4] K. Nakajima, “Physical reservoir computing—an introductory perspec-
tive,” Japanese Journal of Applied Physics, vol. 59, no. 6, p. 060501,
2020.

[5] F. Rosenblatt, “Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms,” 1961.

[6] S.-I. Amari, “Learning patterns and pattern sequences by self-organizing
nets of threshold elements,” IEEE Transactions on computers, vol. 100,
no. 11, pp. 1197–1206, 1972.

[7] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks,” in 2004
IEEE international joint conference on neural networks (IEEE Cat. No.
04CH37541), vol. 2. Ieee, 2004, pp. 985–990.
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