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Abstract—Sketches play an important role in encoding repre-
sentative facial features through simple strokes. The state-of-
the-art approaches for sketch synthesis using generative and
unsupervised learning methods have been able to generate
perceptual facial sketches. However, such methods are prone
to render low-quality facial sketches due to the effect of the
geometry of faces and the portrait background. In this paper,
to tackle this problem, we formulate and incorporate new loss
functions based on facial surface normals and edge maps into a
generative adversarial training framework based on CycleGAN.
Facial surface normals are estimated by a convolutional neural
network based on Dense Inductive Biases for Surface Normal
Estimation (DSINE) and encoded into colored frames indicating
normal directions of pictures, better capturing the geometric
information of the face. Edge maps are estimated by Holistically-
Nested Edge Detection (HED), better capturing the lines and
contours of face pictures. Furthermore, we extend the attention-
guided generator that separates foreground and background
during training, thereby reducing the impact of background
elements on the face sketch. As such, our approach aims to
learn generator architectures to translate pictures to sketches
and vice versa with utmost consistency and geometric accuracy.
Our computational experiments using the FS2K (containing
annotated facial 2,104 images) on an Nvidia A6000 show the
improved performance in terms of Learned Perceptual Image
Patch Similarity (LPIPS, 0.412), Structural Similarity (SSIM,
0.456), Multiscale Structural Similarity (MS-SSIM, 0.515), Fea-
ture Similarity (FSIM, 0.609), Structure Co-Occurrence Texture
(SCOOQOT, 0.404). Our results have the potential to study improved
cycle-consistent architectures to generate face sketches with high-
quality and rich details.

Index Terms—Generative Adversarial Networks, Facial Sketch
Synthesis (FSS), Deep Learning, Surface Normal

I. INTRODUCTION

Sketching is a fundamental technique in many forms of
art and design, ans is often viewed as the first step in
the creative process. By using simple lines, an artist can
outline the overall structure of the subject, which can be the
foundation for further refinement and detailing. In the area
of computer vision, sketching can be viewed as an image-to-
image translation task, which aims to learn a mapping from
one image domain to another one. For example, as shown in
Figure 1, the model translates an image (e.g., a photo) into
another one (e.g., a sketch). In recent years, the advancement
of deep learning models, particularly of Generative Adversarial
Networks (GANs) [1], have triggered new architectures for
image-to-image translation 1 tasks due to the capacity to learn
complex data distributions and the feasibility to generate high-
quality images. In this paper, we utilize deep learning methods

for face sketch synthesis and aim to improve the quality of
generated face sketches by enhancing line accuracy, geometric
structure, and reducing background noise.

Deep

> Learning —>
Model

Photo

Fig. 1. Sketching as Image-to-Image translation

For sketches, lines and geometric structures are of utmost
importance. A well-drawn sketch can capture the essence of
an object or scene using just a few lines, making it crucial
to preserve the integrity of the underlying structure during
the translation process. Surface normals encode geometric
information into RGB colors [2], allowing us to leverage this
representation to capture the geometric details of objects. Here
we propose a method for face sketch synthesis that uses both
edge maps and surface normal maps to ensure the accurate
representation of facial lines and geometric structures. Our
model takes facial photos as input to generate face sketches,
which are then reconstructed back into face photos. Edge maps
and surface normal maps are computed for both the input face
photos and the reconstructed face photos, and during training,
the model is optimized to minimize the differences between
these pairs. By aligning both edge and surface normal maps,
we aim to improve the geometric fidelity of the generated
sketches, resulting in more accurate representations.

One of the key challenges in face sketch synthesis is
minimizing the influence of background elements. Many face-
related datasets contain images with various background com-
ponents, which can introduce noise and affect the accuracy
of the model’s output. We draw inspiration from Attention-
GAN [3] to enhance the model’s focus on the facial region
during the sketch generation process. In our model, we utilize
the generator from AttentionGAN to separate foreground and
background, enabling each to be processed independently dur-
ing training. This separation allows us to reduce the influence
of background elements on the face sketch, resulting in cleaner
and more accurate sketches that focus primarily on the facial
features.
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In this paper, our contributions are as follows:

o We propose an approach that uses edge maps and surface
normal maps to enhance the geometric accuracy of face
sketches. This combination allows for both the preserva-
tion of prominent facial outlines and the accurate details
of facial geometry.

e Second, we use an attention mechanism based on At-
tentionGAN to focus on the facial region. This reduces
the impact of background elements and ensures that the
generated sketches emphasize the essential features of the
face.

o We trained our model on the FS2K dataset and evaluated
it alongside existing models using LPIPS, SSIM, MS-
SSIM, FSIM, and SCOOT metrics. Our model achieved
competitive results in LPIPS, SSIM, and MS-SSIM, and
outperformed others in FSIM and SCOOT.

In the rest of the paper, we will explain the specific implemen-
tation details and present the results of the related experiments.

II. RELATED WORKS
A. Image-to-Image Translation

In the field of image-to-image translation, one of the
most well-known frameworks is Pix2Pix [4], which uses a
conditional GAN to learn a mapping from paired images
in different domains. The supervised learning approach in
Pix2Pix has been widely applied in tasks such as sketch-to-
photo translation, style transfer, and semantic segmentation.
Pix2Pix demonstrated that GANs could successfully generate
high-quality image transformations when paired datasets are
available, yet the reliance on paired training data limits its
applicability in certain cases.

To address the limitations of paired datasets, researchers
have proposed alternative methods. For instance, Cycle-
GAN [5] introduced an unsupervised approach to learn the
mapping between two domains without the need for paired
samples by using cycle consistency loss enabling the trans-
lation between domains where obtaining paired datasets is
difficult or impractical, such as photo-to-sketch or artistic style
transfer. And our model also based on CycleGAN framework.
However, despite the above-mentioned merits, CycleGAN’s
unsupervised nature can sometimes result in lower geometric
fidelity, which is critical in tasks like face sketch synthesis.

B. Face Sketch Synthesis

For face sketch synthesis task, preserving the details of
facial features while maintaining overall geometric accuracy
is challenging. There are currently many deep learning models
for face sketch synthesis, such as APDrawingGAN [6], which
combines global and local networks to capture both the overall
structure of the face and specific facial features. UPDG [7]
addresses face sketch synthesis by introducing an asymmetric
cycle mapping, which ensures visible reconstruction informa-
tion is embedded selectively in facial regions. With localized
discriminators for facial features and a style classifier to
manage multiple drawing styles, the model preserves key facial
details and generates face sketches in a variety of styles.

Learning-to-draw [8] proposed a GAN-based framework with
additional geometric constraints, incorporating depth maps to
ensure the structure is accurately captured in the generated
sketches. Additionally, the CLIP model is also used to ensure
semantic consistency in the generated images.

In our work, we extended the CycleGAN-based facial
sketch synthesis by using edge maps and surface normal maps
to better capture the contours and shapes in the generated
facial sketches. Unlike existing approaches, our model utilizes
surface normal maps to encode relevant geometric information,
further improving the realism of the generated sketches.

III. PROPOSED METHOD

In this section, we will introduce the detailed implementa-
tion of the model.

A. Model

The goal of our research is to train a model that can convert
face photographs into corresponding sketches. To achieve this
goal, we use a dataset containing face photographs and their
associated sketches. We treat this problem as an unpaired
image-to-image translation task between two domains: domain
A, which consists of photographs, and domain B, which
consists of sketches. Since the image pairs are unaligned,
preserving the overall structural integrity between the two
domains is critical. Therefore, we adopt a CycleGAN-based
architecture [5], leveraging cycle consistency to ensure that
the translations between the two domains remain coherent and
faithful to the original inputs.

The structure of the model is shown in Figure 2. Our model
employs two generator networks, G4 and Gp, responsible
for translating images from domain A to domain B and vice
versa. Additionally, two discriminator networks, D4 and Dp,
are used to differentiate between real images in each domain
and the generated images from the opposing domain. This
adversarial training setup ensures that the generated sketches
not only resemble real sketches stylistically but also preserve
the structure of the original photographs.

To further ensure the accuracy of both the lines and ge-
ometric structure of the generated face sketches, our model
incorporates edge and geometric information to guide the
translation process. Specifically, we utilize pre-trained HED
(Holistically-Nested Edge Detection) [9] and DSINE [2] mod-
els, which have demonstrated strong performance in edge
detection and surface normal estimation, respectively. In order
to guide the model training using the aforementioned models,
we introduce the edge loss and surface normal loss, which will
be specifically discussed in Section 3.2.

Since the images in the dataset contain backgrounds, we
improved the generator structure to reduce the impact of
the image background on training, drawing inspiration from
the architecture of AttentionGAN [3]. The structure of the
generator is shown in Figure 3. The most important compo-
nents of the generator are the Attention Mask Generator and
the Content Mask Generator. The Attention Mask Generator
aims to produce both foreground and background attention
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Fig. 2. CycleGAN-based architecture
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Fig. 3. Generator structure

masks, which are used to selectively focus on the relevant
content from the corresponding content masks generated by
the Content Mask Generator and the input image.

Using the Attention Mask Generator and the Content Mask
Generator illustrated in Figure 3, we generate foreground
attention masks, a background attention mask and content
masks. These attention masks are applied to selectively focus
on different regions of the input image, allowing us to process
the foreground (e.g., the face) and the background separately.
The Content Mask Generator further produces content masks
that represent the useful information in these regions. By
combining the attention masks with the content masks, we
can effectively extract relevant features from both the face and
the background while minimizing the influence of background
elements on the face during training. This separation ensures
that the model learns to prioritize facial features without being
distracted by irrelevant background details.

By using a CycleGAN-based framework for unpaired im-
age translation with additional supervision from pre-trained
models in edge detection and surface normal estimation, our
approach ensures that the generated face sketches are both
stylistically accurate and structurally faithful to the original
face photographs. Additionally, we improved the generator by
leveraging the architecture of AttentionGAN, minimizing the
influence of the background on the face during training as
much as possible.

B. Loss Functions

The adversarial loss

In the face sketch synthesis task, the adversarial loss plays
a critical role in guiding the generator to produce sketches.
By employing a generator-discriminator setup, the generator
attempts to create sketches from input images, while the
discriminator learns to distinguish between real sketches and
generated ones. The adversarial loss encourages the generator
to improve the quality of the sketches by minimizing the
discriminator’s ability to distinguish between the two.

The adversarial loss for the generator G and the discrimi-
nator D can be defined as:

Loax = Eawa [Da(@)?] + Evns [(1 = Da(Gp(1)’]

a0 @
+Eyup [Dp(0)’] + Eana [(1 — Dp(Gala))) ]

where a represents the real photographs from domain A, and
b represents the real sketches from domain B; Ga(a) rep-
resents the generated sketches from photographs, and G5 (b)
represents the generated photographs from sketches; D 4 and
D are the outputs of the discriminators for real and generated
images in their respective domains. The first two terms ensure
that the generated sketches resemble real sketches, and the last
two terms ensure that the generated photographs resemble real
photographs.
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The cycle consistency

In face sketch synthesis tasks, cycle consistency loss ensures
that the mapping between the photograph domain and the
sketch domain is consistent. It enforces that if a photograph
is translated into a sketch and then back into a photograph,
the result should closely match the original photograph. This
is important for maintaining the structural integrity of facial
features during translation. The cycle consistency loss is
defined as follows:

Leyee = |GB(Ga(a)) — al| + [Ga(GB () b ()

where G4 and Gp are the same as those introduced in
the adversarial loss section; the first term |Gp(Ga(a)) — all
ensures that converting a photograph to a sketch and then back
to a photograph results in the original photograph; and the
second term |G 4(Gp(b)) — b|| ensures the same for sketches,
maintaining the cycle consistency in both directions.
The surface normal loss

The task of surface normal estimation involves predicting
the orientation of surfaces in an image, which is represented
through a normal map. A surface normal map encodes the 3D
orientation of surfaces by representing the surface normals
as RGB values, where the red, green, and blue channels
correspond to the X, Y, and Z components of the normal
vector, respectively. This encoding is crucial for preserving the
geometric structure of facial features in face sketch synthesis.

In our model, we incorporate the state-of-the-art DSINE
model for surface normal estimation to guide the generation
process. The role of the DSINE model in our setup is similar to
that of cycle consistency. It ensures that the geometric structure
of the generated sketch closely aligns with the original input
image. The surface normal loss is calculated in the model as
shown in Figure 4. The surface normal loss is formulated as
follows:

N
Lorma = Z DSINE - DSINE(GB(GA< ))) )2

3)
where a represents the input photograph, and Gg(Ga(a))
represents the photograph that is generated by first translating
the input into a sketch using G4, and then translating the
sketch back into a photograph using Gp, similar to the
cycle consistency approach. The surface normal 10ss Lyormal 18
computed using the Mean Squared Error (MSE) loss between
the surface normals estimated by the DSINE model for both
the input photograph a and the reconstructed photograph
Gp(Ga(a)). Specifically, N denotes the total number of
pixels, and 7 represents the index of each pixel. The goal is
to minimize the difference between the surface normals of
the original and reconstructed images, ensuring consistency in
geometry through the transformations.

The edge loss

Edge maps can highlight the important structural lines of
an image. In our model, inspired by [7], we use the HED
(Holistically-Nested Edge Detection) [9] model to detect edges
in both the input and the reconstructed input. The edge maps

Surface Normal Loss

DSINE(a)

— Ga(a)
‘1‘ DSINE ¢ Geng;ator
DSINE(Gg(Ga(@))) Gp(Ga(a))
Fig. 4. Surface Normal Loss
Edge Loss
Q\ <= HED
4
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l G
« H E D enGe;ator

HED(Gg(G4(a))) GB(GA(a))

Fig. 5. Edge Loss

are then used to guide the training process, ensuring that the
generated sketch preserves the key structural lines of the input
image.

The edge loss also functions in conjunction with the cycle
consistency to maintain the fidelity of the edges throughout
the translation process. The loss is defined using the LPIPS
(Learned Perceptual Image Patch Similarity) [10] metric,
which measures the perceptual similarity between two images.
The edge loss is calculated in the model as shown in Figure
5. The edge loss is given by:

Legge = LPIPS(HED(a), HED(G5(Ga(a))))  (4)

In this equation, L.4e represents the edge loss, calculated
using the LPIPS function. The HED model estimates the
edges for both the input photograph a and the reconstructed
photograph G5(G 4(a)), and the LPIPS function measures the
perceptual similarity between these two edge maps.
Full losses The overall loss function is as follows:

L= )\edgeLedge + )\normaanormal
+ AGANLGAN + AcycleLcycle (5)

The parameters were configured as Aegge = 1, Anormat = 10,
Agan = 1, )\cycle =0.1
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IV. EXPERIMENTS
A. Dataset

For our experiments, we utilized the FS2K dataset, a
high-quality face sketch synthesis dataset introduced in the
FSGAN [11] paper. The FS2K dataset consists of 2,104
image-sketch pairs, covering a broad spectrum of variations,
including diverse image backgrounds, skin tones, sketching
styles, and lighting conditions. The variety ensures that the
dataset provides a comprehensive and robust foundation for
training deep learning models in face sketch synthesis tasks.

Since our model requires the use of surface normal maps
to guide the training process, we added pseudo-ground truth
surface normal maps to the existing FS2K dataset to ensure
training efficiency and stability. Specifically, the facial pho-
tographs used for training are processed using the DSINE
model for surface normal estimation, and the generated normal
maps are saved in the dataset. The file names of the generated
normal maps must match the original facial photograph file
names to ensure paired usage during training. An example of
the processed dataset is shown in Figure 6.

B. Setup and Results

The model was trained using PyTorch [12] under the follow-
ing experimental settings: 150 epochs, a batch size of 4, and
a learning rate of 2.0 x 10~%. The Adam [13] optimizer was
used to optimize the network. All experiments were conducted
on an Nvidia A6000 GPU. The results obtained from this
training configuration are shown in Figure 8. It is evident
that our results not only maintain a close resemblance to the
original portraits but also exhibit the characteristics of hand-
drawn sketches.

To compare the performance of different models on
the FS2K dataset’s test set, we conducted a quantitative
comparison, comparing our model with CycleGAN [5],
Learn2Draw [8] and FSGAN [11], using LPIPS [10],
SSIM [14], MS-SSIM [15], FSIM [16] and SCOOT [17]
metrics. In Table I, the values highlighted in red indicate
the best performance, while underlined values represent the
second-best results. Our proposed model achieves the second-
best performance in LPIPS, SSIM, and MS-SSIM, demonstrat-
ing competitive results in terms of perceptual similarity and
structural preservation. Furthermore, our model achieves the
best scores in both FSIM and SCOOT. Notably, the SCOOT
metric is specifically designed for evaluating face sketches,
indicating that (1) our method produces results that are closer
to hand-drawn face sketche, and (2) our approach is highly

effective in capturing the fine details and stylistic nuances
characteristic of human-drawn facial sketches, making it well-
suited for the face sketch synthesis task.

TABLE I
QUANTITATIVE COMPARISON BETWEEN MODELS USING LPIPS, SSIM,
MS-SSIM, FSIM AND SCOOT METRICS.

LPIPS| | SSIMT | MS-SSIM?T | FSIMT | SCOOT?T
CycleGAN 0.462 0.364 0.419 0.563 0.331
Learn2Draw 0.429 0.408 0.473 0.583 0.392
FSGAN 0.369 0.508 0.583 0.490 0.275
Ours 0.412 0.456 0.515 0.609 0.404

However, the aforementioned metrics do not always fully
reflect the performance of models in the facial sketch synthesis
task, as deformations are inevitable during sketch drawing.
This leads to discrepancies between the hand-drawn sketches
in the dataset and the real photos (such as differences in the
direction of the eyes or the presence of glasses). Therefore,
we also need to conduct subjective evaluations. As shown
in Figure 9, we compared the three models, and it can
be observed that the face sketches generated by our model
are closer to the hand-drawn sketches in the ground truth.
In contrast, the results from Learn2Draw and CycleGAN
appear somewhat messy and contain noise. Notably, although
FSGAN performs well on the metrics in Table I, the generated
face sketches exhibit distortions and deformations, failing to
accurately reflect the original facial structure.

We also conducted an ablation study on the edge and
surface normal modules. The corresponding results are shown
in Table II and Figure 10. In Table II, By comparing with
models where certain modules were removed, our full model
achieved second place in the LPIPS, SSIM, and FSIM metrics.
In the face-sketch-specific SCOOT metric, the full model still
attained first place. In Flgure 10, it can be seen that after
removing these modules, the generated face sketches became
blurry, noisy, or exhibited disorganized lines.

TABLE 11
RESULTS OF ABLATION STUDIES.
LPIPS| | SSIMt | MS-SSIM?T | FSIM?T | SCOOT?t
w/o Edge & Normal 0.478 0.400 0.520 0.609 0.392
w/o Normal 0.401 0.465 0.519 0.608 0.380
w/o Edge 0.454 0.421 0.526 0.614 0.379
Full 0.412 0.456 0.515 0.609 0.404

V. LIMITION AND FUTURE WORK

We further evaluated the model on non-facial images. While
our model is capable of generating corresponding sketches,
there is a noticeable loss of detail. As illustrated in Figure 7,
elements such as animal fur, brick textures, tree branches, and
architectural details are partially lost in the generated sketches.

During the training process, we utilized pseudo-ground truth
and a pre-trained model to generate surface normals. The
accuracy of the generated surface normals may also have an
impact on the final results.
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Fig. 7. Test on non-facial images

In future work, we will explore the performance of our
model on additional datasets and continue to focus on im-
proving the quality of the generated sketches.

VI. CONCLUSION

In this paper, we presented an approach to face sketch
synthesis, dealing with problems related to facial geometry
and background noise by using edge maps and surface normal
maps into a CycleGAN-based architecture. This method im-
proves geometric fidelity and structural accuracy by guiding
the model to focus on key facial features while minimizing
irrelevant background influence. In future work, we will focus
on providing users with more control over the generated face
sketches and further improving the quality of the generated
images.
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Fig. 8. Results generated by our model
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Fig. 9. Compare with CycleGAN, Learn2Draw and FSGAN
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Fig. 10. Ablation study
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