

An Implementation of Lightweight AI-Based

Network Intrusion Detection Systems

Ryuma Taira and Chikatoshi Yamada

Dept. of Inf. dnd Comm. Syst. Eng.

National Inst. of Tech. Okinawa College

905 Henoko, Nago, Okinawa, Japan

{ic201227@edu., cyamada@}okinawa-ct.ac.jp

Shuichi Ichikawa

Dept. Electrical and Electronic information Engineering

Toyohashi University of Technology

1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

ichikawa@tut.jp

Abstract—Internet of Things (IoT) devices are often

equipped with only the minimum necessary functions due to

limited resources such as memory, which has led to security

vulnerabilities. This paper examines efficient artificial

intelligence (AI)-based implementations of network intrusion

detection systems (NIDS) to solve this problem and presents

prospects for future research.

Keywords—Internet of Things, Edge AI, NIDS, Security

I. INTRODUCTION

In recent years, the rapid development of IoT technology
has led to an explosion in the use of IoT devices in the home
and industrial sectors. These devices are used in a wide variety
of applications such as communication, monitoring, and
control, and are deeply embedded in our daily lives and
business processes. However, IoT devices are typically low-
cost and small in size, which means that they have limited
resources (especially memory and processing power) and
often lack sufficient security features. As a result, these
devices are easy targets for cyberattacks, especially network
intrusion threats.

Conventional software-based intrusion detection systems
are often designed for devices with powerful processing
power and sufficient memory, which may be difficult to apply
to resource-constrained IoT devices. Therefore, approaches to
enhance security with low resources are needed.

The objective of this study is to investigate an efficient AI
based implementation of a network intrusion detection
systems (NIDS) and to provide a means to improve the
security of IoT devices. Specifically, we aim to improve the
performance of the network intrusion detection AI called
Kitsune by measuring changes in its execution speed when its
architecture is changed. As an outlook for future research, we
will also present a path toward the development of
lightweight, high-performance security solutions suitable for
resource-constrained environments.

II. METHODS

A. Kitsune's Algorithm

Kitsune [1][2] is one of the AI algorithms for software-
based network intrusion detection and is available as open
source; the architecture of Kitsune is shown in Figure 1. The
three main features of this algorithm are summarized as
follows.

• The algorithm is easy to compute because of its simple
AI structure.

• Unsupervised learning.

• Real-time intrusion detection.

 The first is that the AI part is composed of an ensemble of
autoencoders, making it easy to compute. By extracting the
features of the packets sent to the system and inputting them
into individual autoencoders, the complexity of the calculation
is reduced compared to a single large neural network.

Second, it is unsupervised learning, which does not require
labeling the input data. This has the advantage of reducing the
amount of effort used for learning, and of being able to
respond to new malware, for example.

Third, packets arriving at the device can be monitored in
real time. This is a great advantage because it allows for early
detection and response when a device is in danger.

B. Packet Feature Extraction

The packet feature extraction function is implemented

using tshark. The tshark is a command line version of the

network packet analysis tool Wireshark. Packet data is

converted from pcap files to tsv files using tshark, and

information such as source and destination IP addresses,

MAC addresses, port numbers, TCP/UDP flags, and packet

size is extracted from the data. The data is then input to a

feature extractor (FE), which calculates incremental statistics.

Specifically, for each feature (flow size, packet interval, byte

count, etc.), the statistics (mean, variance, covariance, etc.)

are updated each time a packet is added. The extracted

features are input to each autoencoder by the feature mapper

(FM).

C. Anomaly Detector (AD)

Kitsune's anomaly detector consists of two layers: an
ensemble layer and an output layer. After computing the root
mean square error (RMSE) of the extracted features in the
ensemble layer, the output layer outputs the final root mean
square error. The anomaly detector also operates in the
manner that it learns the first arbitrary number of input packets
and detects whether the remaining packets are anomalous data
or not. In other words, it is assumed that the packet data in the
learning phase are safe packets with no anomalies.

D. Simulation

 An environment was created to run Kitsune, and actual
packet data was input for the simulation. For the input packets,
network capture files of the “Mirai” malware were prepared
and input. Mirai's network capture file contains 764138
packets of data, and the data after 370000 contains many
compromised packets. Therefore, Kitsune's default program
trains an autoencoder ensemble on the first 5000

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 85–93, January 2025

– 85 –

Fig. 1. Kitsune’s Architecture [1]

packet data and trains an output layer autoencoder on packet

data from 5001 to 50000. After training, the program goes

into execute mode and outputs the RMSE values of the

incoming packet data to check for dangerous data.

III. EXPERIMENTAL RESULTS

A. Simulation Results of the Sample Program

 Kitsune is written in python and released as open source.
The implementation environment is shown in Table I.

TABLE I. IMPLEMENTATION ENVIRONMENT

Implementation

Environment
Details

CPU
13th Gen Intel (R) Core (TM)
i5-13400F 2.50 GHz

RAM 16 GB

Operating System Windows11Home, 64bit, 23H2

Programing Language Python 3.11.7

 Figure 2 shows the execution results of this publicly
available program.

Fig. 2. Simulation results of Kitsune, where Maximum size of Autoencoder

is 10.

 In the Figure 2, the horizontal axis is the number of packets
(time) and the vertical axis is the log scale of RMSE values.
As can be seen from the graph, packets with high RMSE
values are mostly found in packets after approximately
370000.

 Therefore, we modified the program to focus on packets
in the 350000 to 400000 range, and the output was as shown
in Figure 3. As can be seen from Figure 3, which narrows
down the range to be plotted, many packets with high RMSE
values are found after approximately 370000 packets.

Fig. 3. Simulation results between 350000 and 400000

B. Change the Number of Autoencoder Ensembles

The results of changing the maximum size of the
autoencoder within the ensemble layer are shown in Figures 4
and 5.

Fig. 4. Maximum Size of Autoencoder was set to 5

Fig. 5. Maximum Size of Autoencoder was set to 20

 Figures 4 and 5 show the results when the maximum size
of the autoencoders in the ensemble layer is changed from 10
to 5 and 20. The graphs indicate that there was little difference
in the output results. However, changing the maximum size
resulted in a difference in execution time, as shown in Table
II.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 85–93, January 2025

– 86 –

TABLE II. DIFFERENCE IN EXECUTION TIME

Maximum Size of

the Autoencoders

Input

Parameter m Execution Time (sec)

5 31 2541.56

10 19 2106.52

20 15 1944.87

 It can be observed that as the maximum size of
autoencoders is increased, the input parameter m is decreased,
and the execution time is reduced.

IV. CONCLUSIONS

 In this paper, we evaluated and discussed the operation of
an open source implementation of Kitsune, an AI-based
NIDS. In the experiment, we used network capture files from
the Mirai botnet as input data, and checked the system's
operation by adjusting the time range of the output graph and
changing the maximum size of the autoencoder in the
ensemble layer. As the experimental results, we were able to
observe that malicious packets were detected appropriately,
and that the execution time increased and decreased as
expected when changing the maximum size of the
autoencoder. Moreover, the Kitsune adopts an anomaly
detection model using an autoencoder, but by replacing it with
other neural network models such as convolutional neural
networks (CNN) and variational autoencoders (VAE), the
model can be improved. Furthermore, memory efficiency can
be further improved by reevaluating the incremental statistics
used as input data and reducing unnecessary data. In the future
works, we aim to improve Kitsune's performance.

REFERENCES

[1] Mirsky, Y., Doitshman, T., Elovici, Y. and Shabtai, A.: ”Kitsune: an

ensemble of autoencoders for online network intrusion detection,”
Network and Distributed System Security Symposium 2018 (2018).

[2] K. Miyamoto, D. Goto, R. Ishibashi, C. Han, T. Ban, T.Takahashi, J.
Takeuchi, "Packet Classification of Malicious Communications Using
Kitsune Features." Proceedings of the Computer Security Symposium
of the Information Processing Society of Japan, 2021; 2021(0): 1–8.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 14, Number 1, pages 85–93, January 2025

– 87 –

	I. Introduction
	II. Methods
	A. Kitsune's Algorithm
	B. Packet Feature Extraction
	C. Anomaly Detector (AD)
	D. Simulation

	III. Experimental Results
	A. Simulation Results of the Sample Program
	B. Change the Number of Autoencoder Ensembles

	IV. Conclusions
	References

