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Abstract—Internet of Things (IoT) devices are often 

equipped with only the minimum necessary functions due to 

limited resources such as memory, which has led to security 

vulnerabilities. This paper examines efficient artificial 

intelligence (AI)-based implementations of network intrusion 

detection systems (NIDS) to solve this problem and presents 

prospects for future research. 
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I. INTRODUCTION 

In recent years, the rapid development of IoT technology 
has led to an explosion in the use of IoT devices in the home 
and industrial sectors. These devices are used in a wide variety 
of applications such as communication, monitoring, and 
control, and are deeply embedded in our daily lives and 
business processes. However, IoT devices are typically low-
cost and small in size, which means that they have limited 
resources (especially memory and processing power) and 
often lack sufficient security features. As a result, these 
devices are easy targets for cyberattacks, especially network 
intrusion threats. 

Conventional software-based intrusion detection systems 
are often designed for devices with powerful processing 
power and sufficient memory, which may be difficult to apply 
to resource-constrained IoT devices. Therefore, approaches to 
enhance security with low resources are needed. 

The objective of this study is to investigate an efficient AI 
based implementation of a network intrusion detection 
systems (NIDS) and to provide a means to improve the 
security of IoT devices. Specifically, we aim to improve the 
performance of the network intrusion detection AI called 
Kitsune by measuring changes in its execution speed when its 
architecture is changed. As an outlook for future research, we 
will also present a path toward the development of 
lightweight, high-performance security solutions suitable for 
resource-constrained environments. 

II. METHODS 

A. Kitsune's Algorithm 

Kitsune [1][2] is one of the AI algorithms for software-
based network intrusion detection and is available as open 
source; the architecture of Kitsune is shown in Figure 1. The 
three main features of this algorithm are summarized as 
follows.  

• The algorithm is easy to compute because of its simple 
AI structure. 

• Unsupervised learning. 

• Real-time intrusion detection. 

 The first is that the AI part is composed of an ensemble of 
autoencoders, making it easy to compute. By extracting the 
features of the packets sent to the system and inputting them 
into individual autoencoders, the complexity of the calculation 
is reduced compared to a single large neural network. 

Second, it is unsupervised learning, which does not require 
labeling the input data. This has the advantage of reducing the 
amount of effort used for learning, and of being able to 
respond to new malware, for example. 

Third, packets arriving at the device can be monitored in 
real time. This is a great advantage because it allows for early 
detection and response when a device is in danger. 

B. Packet Feature Extraction 

The packet feature extraction function is implemented 

using tshark. The tshark is a command line version of the 

network packet analysis tool Wireshark. Packet data is 

converted from pcap files to tsv files using tshark, and 

information such as source and destination IP addresses, 

MAC addresses, port numbers, TCP/UDP flags, and packet 

size is extracted from the data. The data is then input to a 

feature extractor (FE), which calculates incremental statistics. 

Specifically, for each feature (flow size, packet interval, byte 

count, etc.), the statistics (mean, variance, covariance, etc.) 

are updated each time a packet is added. The extracted 

features are input to each autoencoder by the feature mapper 

(FM). 

C. Anomaly Detector (AD) 

Kitsune's anomaly detector consists of two layers: an 
ensemble layer and an output layer. After computing the root 
mean square error (RMSE) of the extracted features in the 
ensemble layer, the output layer outputs the final root mean 
square error. The anomaly detector also operates in the 
manner that it learns the first arbitrary number of input packets 
and detects whether the remaining packets are anomalous data 
or not. In other words, it is assumed that the packet data in the 
learning phase are safe packets with no anomalies. 

D. Simulation 

 An environment was created to run Kitsune, and actual 
packet data was input for the simulation. For the input packets, 
network capture files of the “Mirai” malware were prepared 
and input. Mirai's network capture file contains 764138 
packets of data, and the data after 370000 contains many 
compromised packets. Therefore, Kitsune's default program 
trains an autoencoder ensemble on the first 5000  
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Fig. 1. Kitsune’s Architecture [1] 

packet data and trains an output layer autoencoder on packet 

data from 5001 to 50000. After training, the program goes 

into execute mode and outputs the RMSE values of the 

incoming packet data to check for dangerous data. 

III. EXPERIMENTAL RESULTS 

A. Simulation Results of the Sample Program 

 Kitsune is written in python and released as open source. 
The implementation environment is shown in Table I. 

TABLE I.  IMPLEMENTATION ENVIRONMENT 

Implementation 

Environment 
Details 

CPU 
13th Gen Intel (R) Core (TM)  
i5-13400F   2.50 GHz 

RAM 16 GB 

Operating System Windows11Home, 64bit, 23H2 

Programing Language Python 3.11.7 

 

 Figure 2 shows the execution results of this publicly 
available program. 

 

Fig. 2. Simulation results of Kitsune, where Maximum size of Autoencoder 

is 10. 

 In the Figure 2, the horizontal axis is the number of packets 
(time) and the vertical axis is the log scale of RMSE values. 
As can be seen from the graph, packets with high RMSE 
values are mostly found in packets after approximately 
370000.  

 Therefore, we modified the program to focus on packets 
in the 350000 to 400000 range, and the output was as shown 
in Figure 3. As can be seen from Figure 3, which narrows 
down the range to be plotted, many packets with high RMSE 
values are found after approximately 370000 packets. 

 

Fig. 3. Simulation results between 350000 and 400000 

  

B. Change the Number of Autoencoder Ensembles 

The results of changing the maximum size of the 
autoencoder within the ensemble layer are shown in Figures 4 
and 5. 

 

Fig. 4. Maximum Size of Autoencoder was set to 5 

 

Fig. 5. Maximum Size of Autoencoder was set to 20 

 Figures 4 and 5 show the results when the maximum size 
of the autoencoders in the ensemble layer is changed from 10 
to 5 and 20. The graphs indicate that there was little difference 
in the output results. However, changing the maximum size 
resulted in a difference in execution time, as shown in Table 
II. 
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TABLE II.  DIFFERENCE IN EXECUTION TIME 

Maximum Size of 

the Autoencoders 

Input 

Parameter m Execution Time (sec) 

5 31 2541.56 

10 19 2106.52 

20 15 1944.87 

 

 It can be observed that as the maximum size of 
autoencoders is increased, the input parameter m is decreased, 
and the execution time is reduced. 

 

IV. CONCLUSIONS 

 In this paper, we evaluated and discussed the operation of 
an open source implementation of Kitsune, an AI-based 
NIDS. In the experiment, we used network capture files from 
the Mirai botnet as input data, and checked the system's 
operation by adjusting the time range of the output graph and 
changing the maximum size of the autoencoder in the 
ensemble layer. As the experimental results, we were able to 
observe that malicious packets were detected appropriately, 
and that the execution time increased and decreased as 
expected when changing the maximum size of the 
autoencoder. Moreover, the Kitsune adopts an anomaly 
detection model using an autoencoder, but by replacing it with 
other neural network models such as convolutional neural 
networks (CNN) and variational autoencoders (VAE), the 
model can be improved. Furthermore, memory efficiency can 
be further improved by reevaluating the incremental statistics 
used as input data and reducing unnecessary data. In the future 
works, we aim to improve Kitsune's performance. 
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