
Towards Fast Deploying the Coordinated Storage,
Computing, and Networking Cloud Service: the Ezilla

Toolkit

Chi-Ming Chen, Yi-Lun Pan, Hsi-En Yu, Chang-Hsing Wu, Hui-Shan Chen, and Kuo-Yang Cheng

National Center for High-Performance Computing
Hsinchu, Taiwan

{jonchen, serenapan, yun, hsing, chwhs, kycheng}@nchc.narl.org.tw

Abstract—With the growth of Cloud based technologies, so
have the cloud-based services has grown over the past few years.
To meet the demands from the Cloud users, service providers
have to provide such a service environment that can be deployed
and provisioned quickly and easily. To help tackling such an
issue, the Ezilla, which is considered as a private Cloud toolkit,
has been developed by the PerComp Team in the National Center
for High-performance Computing. The Ezilla integrates the de
facto Cloud middleware, Web-based interface, and coordinated
cloud infrastructure services such as Storage, computing and
networking services to form an integrated virtual computer.
With the Ezilla toolkit, a virtual computer, which is configured
specifically to meet the needs of an individual Cloud user, is just
one click away. The merit of the Ezilla is simplifying the
complexity of the Cloud system for easier deployment for the
users. Scientist as well as genera users can deploy the Cloud for
their works without dealing with the painful process of building
the Cloud system. The proposed Ezilla toolkit leverages genetic
virtualization techniques, DRBL–SSI (Diskless Remote Boot in
Linux – Single System Image), the cluster scheduling policy, and
distributed filesystem, to orchestrate distributed computing
resources dynamically.

Keywords—Cloud; Virtualization Techniques; Virtual Cluster,
DRBL;Scheduling Policy; Distributed Filesystem;

I. INTRODUCTION
In Cloud computing environment, there are various

important issues, including information security, virtual
computing resource management, and so on. Among these
issues, the virtual computing resource management has
emerged as one of the most important issues in the past few
years. Currently, Cloud users have to manually build specified
virtual cluster using commends in order to generate and
manage virtual resources. To improve the situation, the Ezilla
toolkit [1] has been developed by the PerComp Team of the
National Center for High-Performance Computing (NCHC).
Technology-wise, the Ezilla leverages unattended installation
technique, cloud middleware, clone OS toolkit, and fast
deployment toolkit, which is Diskless Remote Boot in Linux -
Single System Image (DRBL-SSI) [2], to provide the software
infrastructure of the Ezilla system. Furthermore, in order to
provide Cloud users with an environment in a friendly and

straightforward manner, a user interface, the Ezilla Web
Interface, is introduced to offer a seamless and unified access
to geographically distributed resources connected via the
Internet. The Ezilla toolkit helps Cloud users to build and
manage their own private cloud as easy as one single click,
thus to lower the barrier of using the Cloud computing
environment. This research focuses on virtual resources
management with an interactive graphical user environment.

An efficient scheduling policy and distributed filesystem
are both indispensable, especially for distributed computing
and Cloud computing. Thus, the distributed filesystem is
adopted and also built-in Ezilla, which includes GPFS [3] and
MooseFS [4].

The ultimate goal of this research is to find a solution for
scientists/researchers to run their jobs on Clouds without
having to deal with the complexity of the Cloud technologies.
This research focuses on the development of a friendly user
interface, automatically dynamic resource allocation technique
and integrated heterogeneous computing resources. The rest of
the paper is organized as follows. The Section 2 presents
related works. In Sections 3, it shows Ezilla system
architecture and Ezilla fast deployment approach. Following
discussed by the research results of Ezilla toolkit and
experimental performance evaluation presented in the Section
4. Finally, the concluding remarks and future directions are
shared in Section 5.

II. RELATED WORKS

A. Virtualization Technologies
The virtualization technology is not a brand new

technology. In the late 1990s, virtualization was achieved by
complex software (binary translation) techniques given the
fact that the virtualization technique was not supported by
processors at the moment and obtained reasonable
performance. In the late 2006, both the Intel and the AMD
created new processor extensions to their processors and
enhanced the support of the virtualization. Furthermore, they
also implemented the I/O virtualization technology that covers
memory, disk and network by the chipset. The technology was

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 3, Number 1, pages 1–7, January 2014

- 1 -

called hardware-assisted virtualization. This approach
increases the performance by removing a layer of complex
software techniques between the guest OS and hardware.
Examples of virtualization platforms that are adapted to such
hardware include Linux KVM, VMware Workstation,
Microsoft Hyper-V, to name a few.

In the arena of virtualization technology, hypervisor is
considered as a crucial part of the technology. It is software
that manages multiple virtual machines on a single computer
system. Hypervisor is a layer resides between the existing
operating system and hardware to manage the computing
hardware and virtual machines. The characteristics of
virtualization technology are described as the following:

Utilization – better utilization means various services run
on one physical machine with multiple virtual machines
(VMs);

Isolation - better isolation means a VM can halt and catch
fire without affecting the real host or other running VMs;

Flexibility - the ability of the virtualization technologies to
run platforms and operating systems that are different from the
host, good flexibility means more choices for VM platforms
and the ability to run VMs with minimal modification;

Manageability - availability of tools and APIs for starting,
stopping and moving VMs.

Generally, modern hypervisor implementations are divided
into two categories, including Host-based and Bare-metal
approaches. The host-based approach uses modified operating
systems to provide virtual machine monitoring, such as Linux-
VServer [5], Solaris Zones [6], and Kernel-based Virtual
Machine (KVM) [7]. On the other hand, the bare-metal
approach employs small-dedicated hypervisors to directly run
on physical machines. The VMware ESX server [8], and the
XenServer [9] are the famous examples of the bare-metal
approach.

 With success of the virtual technologies, we integrate
virtualization technology – KVM and Web platform. This
research comes up with a new and lightweight approach to
access virtual computing services via the Ezilla toolkit.

B. Cloud Middleware
OpenNebula [10] is one of the most advanced cloud

computing platforms in the open source community. Project
tends to be customizable to meet the demand from the adopter
of the software. The OpenNebula toolkit manages a data
center's virtual infrastructure to build private, public and
hybrid IaaS (Infrastructure as a Service). It is used as central
cloud management and responsible for allocating available
computing resources, creating VMs based on selected VM
image, and deploying the chosen image onto the physical
computing resources for service. However, the OpenNebula
lacks the automatic installation and configuration mechanism.
Therefore, users have to install and configure OpenNebula
manually.

In addition to OpenNebula, the OpenStack [11] is a
collaborative software project designed to create freely
available code and needed standards for the benefit of both

Cloud providers and Cloud customers. OpenStack consists of
three components, as shown in the following:

OpenStack Compute – It can deploy automatically
provisioned virtual compute instances;

OpenStack Object Storage – It is responsible for redundant
storage of static objects;

OpenStack Image Service – It provides discovery, registration,
and delivery services for virtual disk images.

The functions of OpenStack are complete; however, the
installations and configurations of OpenStack are still too
complex for general users to handle. To solve above issues,
the Ezilla toolkit takes the advantage of the kickstart [12]
mechanism used in Linux installation. The kickstart is a
component (i.e. command-line application) wrapper that
provides a range of information related to component
execution including exit status, signals, resource usage, and
compute environment descriptions. The Ezilla server leverages
the kickstart mechanism of fast deployment and the lighter
cloud platform, which is OpenNebula currently, for managing
heterogeneous distributed data center infrastructures. The
complete installation and configuration procedure can be
finished automatically and easily by the Ezilla toolkit

III. THE IMPLEMENTATIONS OF THE EZILLA TOOLKIT

A. Research Objective
The key idea of Cloud Computing lies in its component-

based nature, which are reusability, substitutability and user
friendly. By integrating virtualization technologies, DRBL –
SSI mode, distributed filesystem, cluster scheduling policy
module, and a web environment to access Cloud services via
Ezilla Web Interface is provided. This progress helps to lower
barrier of using Clouds. More specifically, the Ezilla toolkit
implements an autonomic virtual computing resources
management system based on decentralized resource
discovery architecture. At the same time, an efficient
scheduling policy is also crucial to the utilization of Cloud
resource. Therefore, the designed cluster scheduling policy
module is used for the scheduling of virtual cluster and
physical cluster. It can orchestrate the computing resources to
provide the ultimate resource allocations.

B. Implementation and SystemArchitecture
There are three components in the Ezilla toolkit, including

Ezilla Server, Ezilla Client, and intuitive Ezilla Web Interface,
as sketched in the Fig. 1. The Ezilla Server is resporble for
orchestrating computing resources, and monitoring the status
of physical and virtual machines via cluster scheduling
module. In addition, the most important feature is the image
file server used to manage virtual machine images. The VM
images are stored in the file system located in the Ezilla
server. Responding to the request from Cloud users, the
images will be dispatched to Ezilla clients and used to
generate virtual machines in turn by Ezilla clients. Once the
Ezilla Server is in place, Ezilla Clients can be setup
automatically via the DRBL–SSI and existing virtualization
technologies. With such a mechanism implemented, a physical

- 2 -

Ezilla Master installation
Input: Using Ubuntu's preseeding for automating Ezilla
Master installation

1. Select first disk to partition and formation
2. Add DRBL repository
3. Install Linux OS into disk
4. Install needed packages for virtualization, such as KVM,
libvirt, ruby and so on.
5. Copy OpenNebula package, which modified by Percomp
laboratory and Ezilla initiation script into Ezilla Master
6. run Ezilla initiation script
 for Ezilla slave
 - Add support of KVM physical network sharing bridge
 - mount share storage for vm image
 - modify libvirtd.conf
-change unix_sock_group and unix_sock_rw_perm
 - modify qemu.conf
 -change user/group and dynamic_ownership
7. Create necessarily users and generate users' ssh key
8. Add service for DRBL initiation during the first time
booting in Eziila Master

The first time booting in Eziila Master
1. Runing DRBL initiation script
 - install needed packages for DRBL, such as tftp, dhcpd,
nfs and so on.
 - copy needed system files to /tftproot
 - generate Ezilla Slave's system image for DRBL SSI
mode
 - add needed service for DRBL
2. Turn on Ezilla slave's power and enjoy it!!

machine can be easily turned into Ezilla Client via PXE with
the local disk untouched. Hence, computing resources can be
added dynamically without any reconfiguration, thus to
enhance the flexibility of Cloud resource allocation. A Cloud
user can use his personal Ezilla Web interface to create a
Cloud environment integrating storage, networking, and
computing power timely and easily.

Fig. 1. The System Architecture of Ezilla

C. Ezilla Fast Deployment Approach
In the Fig. 2, it is the scenario of Ezilla fast deployment

approach. At first, Cloud users just boot the Ezilla Server with
a genuine Debian or Ubuntu CD, and then detect the network
card to connect Internet. After that, the process of unattended
installation is starting automatically until the whole
installation procedure is completed. Due to DRBL-SSI, a
physical machine can be easily turned into Ezilla Slave via
PXE with the local disk untouched via Ezilla diskless
approach. Hence, computing resources can be added
dynamically without any reconfiguration, thus to enhance the
flexibility of Cloud resource allocation.

Fig. 2. The logical procedure of Ezilla Fast Deployment Approach

Each step of Ezilla fast deployment approach is described
as the following pseudo code in the Fig. 3.

This kind of installation was designed to be as effortless as
possible so that a Cloud environment can be deployed quickly
and easily. In fact, an Ezilla Server can be deployed in three
simple steps via DRBL-SSI mode.

 Fig. 3. The Pseudo Code of Ezilla Fast Deployment Approach

 Step1 – Boot the server with a genuine Debian or
Ubuntu CD and select “Ezilla Cluster”. As the Fig. 4
is shown.

- 3 -

Fig. 4. Install the Ezilla Master

• Step2 – Use DHCP or configure the IP address to
connect the Internet.

• Step3 – The unattended installation is starting
automatically, until the whole precedure is finished.

After completion of all the three steps above when the
Linux server is ready for further use, the automatic installation
process for building the Ezilla environment takes over. The
installation will proceed without requiring the attention from a
system administrator. The installation is completed and the
Ezilla Cloud environment is ready for use once the boot menu
page is shown, as in the Fig. 5

Fig. 5. The Boot Menu on a Ezilla Slave after the Installation

IV. RESULTS AND THE PERFORMANCE EVALUATION

A. Ezilla Web Interface
After the automatic installation of Ezilla platform, we also

delegate the friendly Ezilla Web interface. Via web browsers,
the Cloud users can easily manage and control all behaviors of
VMs with minimum learning efforts, even if users want to
convert physical machine to virtual one directly. There are
some functions in Ezilla Web interface, including Dashboard,
System, Virtual Resources, and so on. The function of
Dashboard – As long as Cloud users log in Ezilla Web
interface, they can monitor the status of virtual machines,
networks, and the physical hardware. It also shows the current
loading of physical machines, as illustrated in the Fig. 6.
Furthermore, the purpose of System is to manage privilege of
users, groups, and access control lists.

The most important function is Virtual Resource, because
it can deal with the configuration of virtual machines,
templates, images, and even P2V. The main task of Virtual
Resources is with the profile of virtual machine demanded by
the user provided, this function generates a specification, as
shown in the Fig. 7, which in turn is parsed by the VM
generator engine to generate specific virtual cluster on the
physical computing resources. In brief, with criteria of the
virtual cluster specified by the user, with one click, a
virtualized Cloud environment customized for a particular user

will be configured in no time. Besides, this function also
provides users with the access to VMs through VNC and SSH
via web, so users are available for accessing the VMs.
Moreover, Cloud users can monitor the detail status of
specified VM via web, as the Fig. 8 is shown.

Fig. 6. Ezilla Web Interface

Fig. 7.Generation of VM/Virtual Cluster via “Drag and Drop”

Fig. 8. Monitoring the status of VM/Virtual Cluster via Web

- 4 -

B. Experimeenta Results
1) Experiment Environment

A series of experiments are performed to evaluate the
performance of the system. The environment set up for the
experiments includes the following components: the multi-
sites physical computing environment, the virtual machine –
KVM, and Disk I/O test tool – dd and IOzone [13]. The
environment characteristics of the computing resources for the
experiments are summarized in the Table I.

TABLE I. SUMMARY OF ENVIRONMENT CHARACTERISTICS OF
EXPERIMENTAL COMPUTING RESOURCES

Resource CPU Model Memory
(GB)

CPU
Speed
(MHz)

#Cores Nodes Network

Capri
Cluster

Intel(R)
Xeon(R) CPU

E5620 ,
2.40GHz *2

96GB
DDR3
ECC

2400 256 32 10GE *2

The detailed hardware information of the computing
resources used for experiments is listed in the Table 1. The
Capri Cluster has 32 nodes, and each node has 8 CPU cores.
In other words, the total number of cores is 256 cores in Capri
Cluster. Therefore, it was used to benchmark the performance
of distributed file systems.

2) Performance Results of Distributed FileSystem
With distributed file system, it is easier to generate and

manage large amount of VMs in real time. The Ezilla toolkit
supports three kinds of distributed file system, the GPFS and
the MooseFS. The computing – Capri cluster is used to
construct these two distributed file systems for experiments to
be carried out.

As shown in the Fig. 9 and Fig. 10 respectively, 5 nodes
were used to construct the file system for all the two file
systems to be compared.

For the environment of GPFS, 5 nodes were used to setup
Network Shared Disk (NSD) of GPFS, with one-node serves
as the quorum-manager. Similarly, we also use five nodes to
be built the chunks of MooseFS (MFS). In the meanwhile,
there is one node used as the master node. Thus, the
equivalence of the storage system used for experiments is
guaranteed.

Fig. 9. Alternative of distributed file system to VMs – GPFS

Fig. 10. Alternative of distributed file system to VMs – MooseFS

In the following experiments, the Ezilla was sued to
process 10 GB of data via VMs to access both distributed file
systems under investigation, which are the GPFS and the
MooseFS.

The first experiment was performed using dd, which is a
common Unix program with its primary purpose as the low-
level copying and conversion of raw data. With the following
command line (CL 1), one file, named “test”, with 10GB in
size was generated on every VM, which mount extra hard disk
image (/mnt/disk) from the GPFS and MooseFS distributed
file system.

/bin/dd if=/dev/zero of=/mnt/disk/test bs=1024k count=10k
(CL1)

Writing the 10 GB “test” file on distributed filesystem
carried out this experiment. The total data written to the
distributed file system grew along with that of the number of
VMs involved. For the case of 1 VM, only 10 GB of data was
written to the file systems, while the case of 32-VM wrote 320
GB of data in total to the file systems.

The results, as shown in the Fig. 11, indicate that the
maximum I/O access speeds to the GPFS and MooseFS (MFS)
were limited to 70 ~ 110 MB per second by using the Virtio
[14], in the case of 1-VM. Since the MFS adopts memory as
the I/O cache, the I/O speed of the MFS is generally faster
than the GPFS. For the specific case of 1-VM, the
performance of the MFS exceeds that of the GPFS for about
40MB per second. As the consequence of using I/O cache to
boost the performance, the MFS suffers significant
performance drop when the number of VMs reach 18 in this
case. This is due to the fact that the memory requested by the
data reach 180 GB in addition to the memory take by the VMs
exceeded the physical memory capacity on the server.

However, the performance was raised when the number of
VM reach 21. The phenomenon was due to the activation of
the mechanism of parallel write into the parallel file systems.
As a consequence, the amount of data queued in the data
cache started to reduce that, in turn, help the improvement of
system performance.

- 5 -

Fig. 11. Comparison between GPFS and MFS using dd to dump 10 GB of

data

The IOzone was chosen to perform the second I/O
experiment test performance with following command (CL 2).

iozone -s 3g -a -o -r 1m -f /mnt/disk/test -Rb /tmp/iozone.xls
(CL 2)

In the CL2, the parameter “-s 3g” indiates that the file size
was 3 GB, with the parameter “-r 1m” to define the record size
to be 1 MB which provides the best I/O performance for both.

According to the Fig. 12 and Fig. 13, with record size as
4KB, the GPFS provided better I/O-write performance (~ 400
MB/s) than MFS (~ 280 MB/s). However, as the record size
grew, the performance of MFS started to catch up with that of
GPFS. When the record size reach 1024 KB, the MFS hit the
record high of 800MB/s, while the GPFS hit 750 MB/s.
Therefore, 1 MB is chosen for benchmarking the performance
of distributed file systems.

When the file size kept growing and finally reached
524288 KB (512 GB), the I/O performance deterioration of
MFS was less than that of the GPFS (need numbers to back up
this statement). Therefore, it is a good choice for the Ezilla to
use the MFS as the distributed file system, not only because it
is open source solution, but also for its competitive
performance w.r.t. the GPFS.

Fig. 12. Writing Rate of Different Record Sizes on MFS using IOzone

Fig. 13 Writing rate for different record sizes on GPFS using IOzone

Obviously, the MFS show better performance on both
Writing/Reading than GPFS, as shown in the Fig. 14 and Fig.
15. The major factor for the MFS to our platform the GPFS
was because the memory of the computer in Capri Cluster has
96GB memory. Thus, the memory demanded by I/O cache of
the MFS was met during the experiment. As long as the
memory is not completely consumed, the MFS has high
stability when large data was processed.

Fig. 14. Comparisons between GPFS and MFS with IOzone Writing

Fig. 15. Comparisons between GPFS and MFS with IOzone Reading

- 6 -

V. CONCLUSION AND FUTURE WORK
The research work – the Ezilla toolkit, provides Cloud

users with a friendly, straightforward and yet efficient user
interface. The Ezilla integrates the de facto Cloud middleware,
and coordinates Cloud infrastructure services (such as storage,
computing, and network) to form a virtual computer in the
distributed computing environment. With one click, Cloud
users can easily customize and configure virtual clusters
specified for particular application environment via the Ezilla
toolkit. It can not only help user to build the virtual
environment easily and automatically, but also provide
different varieties of computing environment such as Linux,
Windows, and so on. Furthermore, with the DRBL-SSI mode
embedded, the complete Ezilla environment can be installed
with ease, thus to provide Cloud users with users’ own private
clouds easily and quickly.

 From the results for the distributed file systems,
compared to the GPFS, the MooseFS presented itself as a
compatible open source alternative for distributed file system.
As long as the memory supply does not exhaust, the
performance of the MFS can be satisfactory to meet the
demand from the Cloud environment. This indicates that the
MooseFS is worthy of investigation for the distributed file
system under the Cloud environment. The next research will
support more powerful distributed filesystem, which is Ceph
[15] filesystem.

REFERENCES
[1] Yi-Lun Pan, Chang-Hsing Wu, Hsi-En Yu, Hui-Shan Chen, Weicheng

Huang, “Creating Your Own Private Cloud: Ezilla Toolkit - For
Coordinated Storage, Computing, and Networking Services,” The 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2012.

[2] DRBL, http://drbl.org/ , 2013.

[3] Gupta, K., Jain, R., Koltsidas, I., Pucha, H., Sarkar, P., Seaman, M., and
Subhraveti, D. , “GPFS-SNC: An enterprise storage framework for
virtual-machine clouds,” IBM Journal of Research and Development,
pp. 2:1-2:10, 2011.

[4] Moose, URL: http://www.moosefs.org, 2013.
[5] S. Soltesz, H. P¨otzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,

"Container-based Operating System Virtualization: A Scalable, High-
Performance Alternative to Hypervisors, " Proceedings of ACM
SIGOPS/Eurosys European Conf. on Computer Systems, pp. 275-287,
Mar. 2007.

[6] D. Price and A. Tucker, "Solaris Zones: Operating Systems Support for
Consolidating Commercial Workloads, " Proceedings of 18th Large
Installation System Administration Conf., pp. 241-254, Nov. 2004.

[7] B. Zhang, X. Wang, R. Lai, Y. Liang, Z. Wang, Y. Luo, and X. Li,
"Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual
Machine (KVM)," International Conference on Network and Parallel
Computing, pp. 220-231, Zhengzhou, China, September 13-15, 2010.

[8] John Paul, "VMWare ESX Server Workload Analysis: How to
Determine Good Candidates for Virtualization," 33rd International
Computer Measurement Group Conference, pp. 483-484, San Diego,
CA, USA, December 2-7, 2007.

[9] X. Ge, H. Jin; S. Wu, X. Shi, W. Gao, "A method of multi-VM
automatic network configuration," Intelligent Computing and Intelligent
Systems, pp. 309-313, 2009.

[10] Milojičić D., Llorente I., Montero R., "OpenNebula: A Cloud
Management Tool," Internet Computing, IEEE 2011, 15 (2), 11-14,
2011.

[11] Mahjoub M., Mdhaffar A., Halima R., Jmaiel M., “A comparative study
of the current Cloud Computing technologies and offers,“ the
Proceedings of the 2011 First International Symposium on Network
Cloud Computing and Applications, pp. 131-134 , 2011.

[12] Groth P., “A Distributed Algorithm for Determining the Provenance of
Data, “ the IEEE Fourth International Conference on eScience, pp. 166-
173, 2008.

[13] IOzone, http://www.iozone.org, 2013.
[14] Virtio, http://www.linux-kvm.org/page/Virtio/ ,2013.
[15] Ceph filesytem , http://ceph.com/

- 7 -

