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Abstract—LZW algorithm is one of the most important com-
pression and decompression algorithms. The main contribution
of this paper is to present an efficient hardware architecture
of LZW decompression algorithm and to implement it in an
FPGA. In our implementation, the codes of a compressed file
is read one by one, and the dictionary table is continuously
updated until the table is full. For each code of the com-
pressed file, an inverse of string corresponding to this code
is sequentially written to an output buffer. The length of this
string and the address of the forefront of this string is stored.
The inverse of string can be output reversely from the output
buffer using the stored length and forefront address. Since
output buffer uses dual-port block RAMs, input of the inverse
strings and output of the original strings are performed in
parallel. The experimental results show that our FPGA module
of LZW decompression on Virtex-7 family FPGA uses 287 slice
registers, 282 slice LUTs and 7 block RAMs with 36k-bit. One
LZW decompression module is more than 2 times faster than
sequential LZW decompression on a single CPU. Since the
proposed FPGA module uses a few resources of the FPGA,
we implement 34 LZW decompression modules which works
in parallel in the FPGA. In other words, our implementation
runs up to 64 times faster than sequential LZW decompression

compression of large volumes of arbitrary data [4]. The
speed of LZ78 algorithm depends on finding the longest
matching string from the dictionary table. However, not all
of the strings stored in the table have the same length, it
wastes a lots of memory spaces in hardware implementation.
LZW algorithm is proposed to reduce the large memory
required in hardware implementation of LZ78 algorithm.
The dictionary of LZW algorithm is initialized with the
underlying character set and built up from top to buttom.
Each entry of dictionary of LZW algorithm represents a
string. Instead of storing entire string in the dictionary, each
entry includes one character and one pointer . The character
is the last character of corresponding string. The pointer
points to an entry which represents the string excluding
the last character. We can obtain the inverse of string by
recursively accessing the entries of the dictionary depend-
ing on stored pointers. In this paper, we focus on LZW
compression which is used in Unix uniligpmpress and in

GIF image format. LZW compression is included in TIFF

file format standard [5], which is widely used in the area
of commercial digital printing. Since dictionary tables are
created by reading input data one by one, LZW compression
and decompression are hard to parallelize. The main goal of
this paper is to develop an efficient hardware architecture to
Data compression is a method of encoding rules that sulmaintain the dictionary and implement it in an FPGA.
stantially reduces the total memory space to store or transmit An FPGA (Field Programmable Gate Array) is an inte-
a file in digital communications and data processing. Twograted circuit designed to be configured by a designer after
kinds of data compression are used in different areas. Onmanufacturing. It contains an array of programmable logic
of these is lossy data compression that is commonly useblocks, and the reconfigurable interconnects allow the blocks
to compress images. Some details of the image is loseth be inter-wired in different configurations. Since any logic
and can never be recovered. Therefore, decompression oircuits can be embedded in an FPGA, it can be used for
lossy compressed images does not recovers the same imaggsneral-purpose parallel computing [6]. Recent FPGAs have
The other is lossless data compression that preserves ambedded DSP slices and block RAMs. The Xilinx Virtex-7
information of the original file. We can obtain the intact files family FPGAs have DSP slices, each of which is equipped
by the decompression of lossless compressed files. The mosith a multiplier, adders/subtracters, logic operators, regis-
famous compression algorithms are LZ-based algorithmsers, etc [7]. A DSP slice also has pipeline registers between
such as LZ77 [1], LZ78 [2] and LZW [3]. LZ77 algorithm operators to reduce the propagation time. A block RAM is an
is to find the longest string of pending part of a file, thatembedded dual-port memory supporting synchronized read
matches to the string in processed part of the file. Henceand write operations, and can be configured as a 36k-bit or
it is not well for large volumes of arbitrary data. LZ78 two 18k-bit dual port RAMs [8]. Since FPGA chips maintain
algorithm creates a dictionary table that stores unmatchetklatively low price and its programmable features, it is
strings. LZ78 algorithm outperforms LZ77 algorithm for suitable for a hardware implementation of image processing

on a single CPU.
Keywords-LZW, decompression, FPGA, block RAMs
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methodto a great extent. They are widely used in consumer Il. LZW COMPRESSION AND DECOMPRESSION

and industrial products for accelerating processor intensive ) ) L )
algorithm [9], [10], [11], [12], [13], [14]. The main purpose of this section is to review LZW com-

) ) pression and decompression algorithms. Please see Section
There is some research for accelerating LZW decom- 3 i, [5] for details.
pression which are .implemented on hardware device as The LZW (Lempei-Ziv-Welch) [3] lossless data compres-
FPGAs or VLSI. Various accelerators have been proposed;, aigorithm gives high compression efficiency. In this
by different manufacturers. LZWR3 Core by Helion [15] gigrithm, an input string of characters is compressed into
provides a de_(?omp_ressmn rate of 1_80.75M_Bytes/s clocked 4 series of codes using a dictionary table that maps string
226MHz in Xilinx Virtex-5 FPGA. Lin [16] gives a compar- i fixed-length codes. The dictionary of LZW algorithm
ative decompression rate within the range~BSMBYIes/S i jnitialized with the underlying character set and built
clocked at 100MHz, where parallel fixed-length d|ct|onaryup from top to buttom. If the input file is an image, the

tables are used. Navqi [17] provides a dgcor.n.pression raﬂ?nderlying character set may be P55 represented by 8-

of 140~160MBytes/s clocked at SOMHz in Xilinx Virtex- i ' |n"general, the compression ratio is improved as the

2 FPGA. For each compressed image which is stored ifqyqresq space of dictionary table increases. However, the

a file, it is decompressed while the original image is usedya nymber of entries of the dictionary is always 4096

Hence. decompression is performed more frequently thagince the improvement is of little significance beyond this

compression, we say that LZW decompression is more, ,mner The LZW compression algorithm reads characters

important than the compression. of input file one by one and search for the longest matched
The main contribution of this paper is to present anstring in the dictionary table. It writes the index of entry

efficient hardware LZW decompression algorithm and toof the matched string as the output code. Subsequently, it

implement it in an FPGA. Our FPGA module of hardware concatenates the matched string and the next character to add

LZW decompression on Virtex-7 family FPGA uses usesit into the dictionary as a new entry. L&f = zgzq -+ - 2,1

287 slice registers, 282 slice LUTs and 14 block RAMs withbe the characters of input file and = yoy1 - Ym_1

18k-bit. In our implementation, the updating of dictionary be compressed codes. For simplicity, we assume that an

tables is continuously performed every 2 clock cycles, whileinput string includes 4 characteis b, ¢ and d. Let S

the operation of writting out characters is performed inbe a string table which maps a string to a code, where

parallel. Since updating of dictionary tables only depends onhe code corresponds to index of table. The string table

the input compressed codes and faster than the operation §f is initialized asS(a) = 0, S(b) = 1, S(¢) = 2 and

writting out characters, the original characters are output by5(d) = 3. New code is assigned to a string by performing

traversing the dictionary tables without validating whether‘AddTable” operation. For example, after initialization 8f

the coresponding entry of dictionary has been updated af AddTable(b) is performed,S(cb) = 4 holds. The LZW

not. The experimental resultls show that our hardware LZWcompression algorithm is described as follows:

decompression module runs 2.1 times faster than sequential . )

LZW decompression on a single CPU. Since the decompred-ZW compression algorithm]

sion rate is data dependent, according to the experimentl’ ¢ <~ 0t n —1do

results, the decompression rate of our module is up to (€[ ziisinS)

279.84MBytes/s while the compression ratio of input file Qe Q@i

is high. Even if the compression ratio is low, our module _ ©!S€ Output§($2)); AddTable || z;); @ « z;;

still has a decompression rate of 183.38MBytes/s. Since thQUIpUt(S(Q));

proposed FPGA module uses only a few resources of the

FPGA, we implement 34 LZW decompression modules inyhere “||” denotes the concatenation of characters @nd
FPGA, where all modules works in parallel. Our implemen-gdenotes a string.

tation of 34 paralleled modules runs up to _64 times faster Taple I shows the compression flow of an input string
than sequential LZW decompression on a single CPU.  «.pchebeda”. First, “zo = ¢ is read from input file. Since
This paper is organized as follows. Section Il reviewsS || zo = cis in S, Q «+ c is performed. Subsequently, the
the LZW compression and decompression algorithms. Weext character; = b" is input. Since) || z; = cb is notin
also show a hardware LZW decompression algorithm in thisS. S(c) = 2 is output as a code. Moreove®, | x; = cb is
section which is suitable to be implemented in a FPGA.mapped to 4, more specificall§(cb) = 4 holds.Q) +— z; =
In Section Ill, we show an efficient FPGA implementation b is performed. In the same way, we can confirm that series
of the hardware LZW decompression algorithm. Section IVof codes 214630 is output as well &%cb) = 4, .5(bc) =
shows the experimental results of the performance of thé, S(cbc) = 6, S(cbed) = 7, S(da) = 8 are added to table.
hardware LZW decompression algorithm. Finally, we con- We show LZW decompression algorithm on which we
clude this paper in Section V. focus in this paper. Laf’ be the dictionary of decompression
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Table | Table Il

LZW COMPRESSION FLOW FOR INPUT STRING = cbcbcbeda LZW DECOMPRESSION FLOW FOR INPUT CODEY" = 214630
i T Q S Y iy | C X
0 ¢ - - - 0 2 — c
1 b | e b4 2 1 1| ch(4) b
2 ¢ b be(5) 1 2 4 be(5) cb
3 b c - — 3 6 cbe(6)  cbe
4 ¢ cb cbe(6) 4 4 3 | cbed(7) d
5 b c - — 5 0 da(8) a
6 ¢ cb — —
7 d cbe Cde(?) 6 Table 1l
g a d da(8) g THE VALUES OF p, L, Cy AND C'IF Y = 214630
| a h
i | op) [ Cr@) [ LH C
0 | NULL a 1 a
which is the inverse of tables. For example, ifS(cb) = ; Hﬂtt IC’ } i
4, C(4) = c¢b holds. TableC is initialized asC(0) = a, 3 | NULL d 1 d
C(l) = b, C(2) = cand C(3) = d. Let C(i) denote ‘5‘ % ¢ g Zb
the first character of corresponding string of code~or 6| 4 . 3 o
example,C¢(4) = ¢ while C(4) = cb holds. The LZW 7 6 c 4 cbed
decompression algorithm reads a sefie®f codes one by g 3 d 2 da
a - -

one and adds an entry of the table. It writes a sttihgt the
same time. The LZW decompression algorithm is described

as follows: 4 characters:(0) = a, a(1) = b, a(2) = ¢ anda(3) = d.
[LZW decompression algorithm] Let Y = yoy1---ym—1 denote the compressed series of
Output(Clyo)); codes. Each _of the firsh — 1 code;yo, Y1, - Ym—2 has
fori«— 1tom —1do a corresponding AddTable operation such that the number
if(y; isin C) of entries of tableC' is k +m — 1. Let p denote the pointer
begin table using input codé&’:
Output((y; ));
. ): . [ NULL, if(0<i<k—1)
e pli) = { yig fk<i<k+m-1 @
else . We traverse pointer tablg until reaching NULL.
begin Let p°(i) = i andp? T1(i) = p(p’(i)) for all j > 0 and
Output(Cy;—1) || Cy(¥i-1)); i. More specifically,p’ (i) is the code where we reach from
AddTable(((y;-1) [| Cr(yi-1)); codes in jth pointer traversing operation. L&) be an in-
end teger that satisfies”(*) (i) =NULL and p“()~(i) £NULL.

Let C; be a character table defined as follows:

Table Il shows the decompression flow for a series of
codes214630. The charactef((2) = c) of the first code _ (i), if0<i<k—1)
“2" is output. Next, the code; = 1 is input. Sincey; = 1 Cy(i) = { C(p(i)), itk <i<k+m—1) 2)
isin C, C(1) = b is output and string”(yo) || C(y1) = cb ’ -
is added toC'(4). Then, next codg, = 4 is input. Since We note thatC (i) represents the first character 0f(i).
Y2 = 4 isin C, C(4) = cb is output and string”(y;) || Also, since each code afi(k < i < k+m — 1) has a
C(y2) = be is added toC(5). Next, sincey; = 6 is not ~ corresponding AddTable operation as shown in LZW decom-
in C, C(y2) || Cs(y2) = cbe is output and stringebe is  pression before, we must notice thatif< i < k +m — 2,
added toC(6). It is simple to confirm that stringbcbcbeda  the last character of'(i) equals toC/ (i + 1). Hence, we
is output as well asb, be, che, cbed, da are added to table.  can define string”(i) as follows:

We will modify LZW decompression to implement it
in the FPGA. We define several notations before showing . Cy(i), if0<i<k—1)
the hardware LZW decompression algorithm. We assume )= { T(), if(k<i<k+m—2) )
that X = zox1---2,_1 iS a string of characters that are
selected from a underlying alphabet set, where the alphabethere T'(i) denotesC/(p*~1(3)) | C;(p*D~2(i) +
set consists of charactersy(0), a(1), ..., a(k —1). The  1)---C¢(p°(i) +1). Table 1ll shows the values of, C¢, L
same as the example above, we assumekthat! holds as andC' if Y = 214630.
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Next, we show the flow of the hardware LZW decompres-writting operation of it. Part 3 is shown as follows:
sion which can be implemented in a FPGA. This algorithm
is performed with 3 parts as follows:

Part 1 Update dictionary table
Part 2 write inverse of corresponding string to memory
Part 3 read string reversely from memory to output

[Part 3 of hardware LZW decompression algorithm]
fori< O0tom—1do
{L(%), addr} « t[i];
while(L(z) # 0)
Output(§addr]);

Part 1 of hardware LZW decompression algorithm updates L(i)  L(i) = 1; addr « addr —1;

pointer tablep and character tabl€’; sequentially. For

i(0 <i < k—1), pandCy are initialized which are con- In our implementation, we use dual-port mode block
figured as virtual memory space occpuying any memorieRAMs of FPGA to implement the tables Cy, b. Hence,
resources. For i(k< ¢ < k+ m — 1), p is updated with the writting and reading operations of these tables can be
the values of input codes. The first charactersCgf) are  performed concurrently. In other words, the operation of
obtained to update tabl€’;. We show Part 1 of hardware 3 Parts of hardware LZW decompression algorithm are

LZW decompression algorithm as follows: implemented in parallel that we show this in the next section.
[Part 1 of hardware LZW decompression algorithm] 1. OUR FPGAARCHITECTURE FORLZW
fori< Otok—1do DECOMPRESSION

p.(l)  NULL; Cy(i) <= a(i); This section describes our FPGA architecture for the
fori+— ktok+m—1do h : . X
) . . 17y, ardware LZW decompression algorithm using block RAMs
p(0) < yiogs Cp (i) < Cr(p*(2); in Xilinx Virtex-7 FPGA. We use Xilinx Virtex-7 Family
FPGA XC7VX485T-2 as the target device [18].

In Part 2 of hardware LZW decompression algorithm, for In this paper, we focus on the decompression of a gray-
each compressed cogd0 < i < m—1) of Y, characters of scale image with 8-bit intensity level. First, we show the
corresponding string@’(¢) is reversely read out from table compression of the image. The input file contains a string
Cy by traversing pointer table. At the same time with of integers within the rangg0,255]. Therefore, the dic-
traversing operation, the length of string is also computedionary table of LZW compression is initialized with the
and stored inL(i). For example, ifC'(4) = ¢b holds,cb is  underlying integers sdb, 255]. Also, code 256 is reserved
read out in the order ak — c. The inverse of strings are as “ClearCode” which denotes to clear the table. Code 257
sequentially written to an output memory as a buffer. Letis reserved as “EndOfinformation” which represents the end
b denote this output memory andidr denote the current of the input file. Then, dictionary table is built up from 258
writting address of it. The writting operation bfis from top by performing AddTable operation. We configure the size of
to bottom. While the last character of inverse of string fortable to be 4096 in this paper. Hence, “ClearCode” is output
one code is written td, the lengthL(:) and current address after the entry 4095 is added to the table. Subsequently,
addr are stored in another table definedtasvhereaddr  the table is initialized and bulit up from 258 again. The
now represents the address of the first charactél(of. The  same operation is repeated until all pixels of input image
details of Part 2 of hardware LZW decompression algorithmare converted to codes. “EndOflnformation” is output after
are shown as follows: the last pixel of input image is compressed to a code. We
note that a string of codes is seperated by “ClearCode”
which is called a code segment. Each code segment has
4096 — 258 = 3838 codes except the last one which has less
codes.

In our implementation, our LZW-based module decom-
presses all code segments one by one. This module contains
pointer tablep and character table’;. First, a virtual
memory space with the rand@ 257] is reserved. The tables
take up the address space but do not actually occupy any
part of table hardware. Since tagl@ndC/ both have 3838

In Part 3 of hardware LZW decompression algorithm,entries, the size of tableis 12 x 3838 = 44.97K-bit and the
the length L(i¢) and addressiddr of the first of string size of tableC; is 8 x 3838 = 29.98K-bit. Hence, we use
are read from table one by one. Then, for each pair of 3 and 2 18K-bit block RAMs to implement pointer table
addr and L(i), we read string reversely fromddr untii  p and character tabl€’';, respectively. Moreover, we use
L(4) characters are all read out from output membriffhe  these block RAMs as dual-port mode memory [8] as shown
reading operation o is bottom to top which is opposite to in Figure 1. A dual-port block RAM has two set of ports

[Part 2 of hardware LZW decompression algorithm]
fori+< 0tom—1do
J < Yis
while(p(j) # NULL)
bladdr] + Cy(j +1); j 4 p(j);
L(i) < L(i) + 1; addr < addr + 1;
bladdr] < C¢(j); L(i) < L(i) + 1;
t[i] < {L(%), addr}; addr < addr + 1;
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12bit 8bit

- Priie o= as dual-port block RAM as shown in Figure 1. After the

0
AD;,Q‘A‘P' P i EE 0% inverse of string is written into the output buffer through
C’Zﬁj ) poA Port B of it, we can obtain the decompressed characters by
DIB reading the inverse reversely through the Port A of it. If
ADDRB ——| B [ the code buffer is not empty, we read the first code from
C’LVlfg ) 003(3837) 105 58374095 code buffer to output the corresponding string of this code.
— For example, for the codg;(0 < i < n — 1) from code
block RAM table p table C,

buffer, we can obtain an inverse @f(y;) which is the
string corresponding to codg by traversing the table
Figure 1. Dual-port block RAM and memory configurations of taple  and C. First, if y; < 258, C(y;) = C;(y;) = y; holds,
andC; and the length of string@’(y;) must be 1. The string’(y;)
with length 1 is written into output buffer through port
DIB of the output buffer. Otherwise, if; > 258, we read
such as Port A and Port B which work independently. Thestring C(y;) reversely by traversing the tabteand Cy and
architecture of our LZW decompression module is shownyrite it to output buffer. As shown in Figure 2, Port A
in Figure 2. Since the updating of tabteand C'y is input  of table p is used for traversing operation. {f; > 258,
code dependent, we show it first. For tablePort B of 4, — 258 is computed and connected to p@DDRA of
it is used to write all codes ot into the block RAM  table p. The pointerp!(y; — 258) = p(y; — 258) will
one by one, where the codes are used as pointers during: read out and feed back to poMDDRA through a
traversing operation. We notice that codes’oshould have  multiplexer. Concurrently, charactéry (y; — 258+ 1) is read
been written into the block RAM from entry 258. Since a out from tableC; through portADDRB of table C'; which
virtual memory space with the range, 257] is considered, depends on porADDRA of table p as shown in Figure.
the table is actually built up from entry O to bottom. More This character will be written into output buffer in the next
specifically,y, is written into entry O of tablep. For table  clock cycle. Next, we see the tabjeagain, if the pointer
Cy, Port A of itis used to update this table. The same as thg! (y, —258) > 258, it is clearly that the traversing operation
tablep, Cy(i)(0 < i < 257) is reserved as virtual memory has not reached the dead end. The poiptér; — 258) is
space.Cy is also built up from entry 0. More specifically, fed back to portADDRA through a multiplexer. Then, the
C(258) is written into entry O of table”;. As shown in  next pointerp?(y; — 258) = p(p'(y; — 258)) will be read
previous section, if) < i < 257, Cf(i) = 7 holds. Also, if  out from tablep. Also, at the same time, depending on the
258 < i < 4095, Cy(i) = Cy(p(i)) = Cy(yi—258) holds.  pointer p'(y; — 258), characterC(p'(y; — 258) + 1) is
For example, we want to updae (i)(i > 258) which cor-  read out from table”;. The traversing operation will not
responds tQy; —oss. If yi—as5s < 258, Cr(yi—258) = yi—258  stop until the pointep™®—1(y; — 258) is read out, where
holds, then we update this table with_255. Otherwise, p(p()-1(y; — 258)) =NULL holds andL(i) denotes the
if y;—258 > 258, we need to read out the value of entry length of corresponding string. We use a counter to accumu-

Yi—25s from tableCy. Actually, since memory spade, 257]  late L(i) during traversing operation. For traversing opera-
is reserved, we read outy(y;—25s — 258) to update this tion of codeyi, it is clearly that characteiS; (y; —258+1) ||
table. As shown in Figure 2, we write the new entry throughcf(pl(yi —258) + 1) || ---Cf (pL@D=1(y; — 258) + 1) are

port DIA of table Cy using a multiplexer. The multiplexer written into the output buffer one by one. In other words,
select the value between the input caglesss and output  inverse of stringC(y;) are store in output buffer from top
C(yi—258 — 258) of port DOA. Since updating tablp and  to bottom. As soon as the last character of inverse of string
Cy only depends on the input code without traversing thec(yi) is written into output buffer, the lengttL(i) and
tables, all entries of two tables are concurrently updated ongyrrent writting address of output buffer are store in table
by one. It takes 2 clock cycles to update each entry until thevhere tablet is configured as a FIFO memory using block
last code of one code segment is input. In other words, alRAMs.
input codes are input once every 2 clock cycles. For each code stored in code buffer, the traversing oper-
Next, we will show how to write an inverse of string to ation is performed to written inverse of the corresponding
output buffer by traversing table and C';. Since traversing string to output buffer through poiDIB of output buffer.
operation of tablep and C; is performed for each code, it Moreover, the length and address of first character of the
takes more than 2 clock cycles to obtain the inverse of stringtring is stored in tablé. Next, we show how to otuput
for one code. Hence, we use a code buffer to store the inpugtrings reversely from output buffer using the other port of
codes and to process them one by one afterwards, whemtput buffer. First, if table is not empty, we obtairl(7)
the code buffer is configured as a FIFO(First-In-First-Out)and addr (i) from this table, whereL(i) is the length of
memory using block RAMs. We use an output buffer to writestring C(y;) of codey;. Then, reading operation of output
the inverse of strings in it. The output buffer is configuredbuffer starts at addressldr(i) through portADDRA. L(i)
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length of  address of first

substring character
code buffer \ /
p(i) L() L(O) [addr(©)] 111
L(1) |addr(1)
ddr(2)
. p(258) J L2) |a
L(3) |adar(3
input codes 5(259) . ( .) a r( ) *
] p(260) -
p(261)
L D DIB |-
table ¢
™ | 4DDRB '_
e
> pointer table p ADDRA .
counter addr(0)|FL(0)=1 8bit
| LL(1)=2
it [€258) T output (D04)
C,(259)
» | ADDR4 | £1(260) DOA  code L=
—— C,(261) counter' | ;pprp |_addr2)
code—> — 132
ADDRA ADDRB DOB > b [
of table p—’IE
p
character table C; output buffer

Figure2. The outline of our FPGA architecture for hardware LZW algorithm

is decreased during the reading operation. The value dflock RAMs to implement the table and C;. The size
addr(i) is decreased every clock cycle unfi(i) reaches 0. of output buffer is8 x 3838 x 2 = 59.97K-bit that we
In other words, inverse of'(y;) is output reversely by the use 4 18K-bit block RAMs to implement it. The depth of
reading operation. Since output buffer is configured as dualeutput buffer is described with 13-bit. Hence, the size of
port block RAM memory, the writing and reading operation table ¢ is (12 + 13) x 1280 = 31.25K-bit. We use 2 18K-
of output buffer are performed in parallel. Moreover, thebit block RAMs to implement it. Totally, 14 18K-bit block
updating of tablep andC are also performed in parallel. If RAMs are used in our implementation of hardware LZW
all codes of this code segment are decompressed, the codéscompression algorithm.
of new code segment will input into the LZW decompres-
sion module. The same procedure is repeated without re- IV. EXPERIMENTAL RESULTS
initializing all the tables. The module terminates as soon as This section shows the implementation results of the
all codes of input file are decompressed and then wait fohardware LZW decompression algorithm in the FPGA.
the next input file. We have implemented the proposed architecture for hard-
In our implementation, each entry of tableand C; is  ware LZW decompression algorithm and evaluated it in
updated every 2 clock cycles. For a certain code stored iWC707 board [19] equipped with the Xilinx Virtex-7 FPGA
code buffer, an inverse of the corresponding string is writterlXC7VX485T-2. According to the implementation results,
into output buffer continuously. In other words, if string one LZW decompression module uses 287 slice registers,
contains L characters, it take€ clock cycles to write it 283 slice LUTs and 14 18K-bit block RAMs. We implement
into output buffer. If the stringC(y;) of a certain code 34 LZW decompression modules which work in parallel in
y; is long, it takes many clock cycles to write the string the FPGA. The experimental results of the implementation
into output buffer. And during the writting operation of is shown in Table IV. We also use Intel Xeon CPU E5-
code y;, the nexty;.; can not be performed. However, 2430 (2.2GHz) to evaluate the running time of sequential
the input codes are input every clock cycles. ThereforeLZW decompression. We have used three gray scale images
the number of codes which are stored in code buffer willwith 4096 x 3072 pixels as shown in Figure 3, which are
increase. To avoid the overflow of the code buffer, theconverted from JIS X 9204-2004 standard color image data.
size of code buffer is12 x 3838 = 44.97K-bit which ~ Table V shows the time of decompression on CPU and
occupies 3 18K-bit block RAMs. We use 3 and 2 18K-bit FPGA and the compression ratig g iinel image size )

AV T o
Compressed image size
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Table V
EXPERIMENTAL RESULTS(MILLISECONDS) FOR THREE IMAGES

PRINTER

images | compression| timeof | timeof | Speedup

ratio CPU FPGA ratio

f “Crafts” 1.43:1 141.534 | 65.438 2.16:1
oo R ., w , “Flowers” 1.72:1 127.136 | 60.998 | 2.08:1
Crafts Flowers Graph “Graph” 36.72:1 759 | 42.882 | L.771

Figure3. Three gray scale image witt096 x 3072 pixels

an Virtex-7 family FPGA XC7VX485T-2. According to the

he i . b has high ) L _implementation results, one LZW decompression module
The image “Graph” has high compression ratio since it qeq 587 gjice registers, 283 slice LUTs and 14 18K-bit
has large areas with simliar intensity levels. The image, . RAMs, where these are very few of FPGA resources.
“Crafts” has small compression ratio since it has smaIIBy simulation, one FPGA module of LZW decompression
c_ieta|ls. Both CP.LJ. _and FPGA de_comprgssmn take MO§s more than 2 times faster than sequential LZW decom-
time to create dicitionary tables if the image has smaIIpression on a single CPU. We also implemented 34 LZW
compression ratio. In LZW decompression on CPU, thechiecompression modules in parallel which attains a speed

ohperatlon O.f creatlngl d|ct|o_nar3|/ tables _occpw?:spcr;n:stho p factor of 64 over the sequential implementation on the
the computing time. In our implementation on » Necpy. our module provides a decompression rate up to

operation of creating tables is performed independently, an 79.84MBytes/s which is higher than other research. Since

¥vr|tt|ng charf;ctf?rs o outpultl llju:;ferh and our:put chargcter?he decompression rate is data dependent, the decompression
rom qutput utier are parafleled, hence, t € operation O} e can be even better if the compression rate of input file
outputing characters occpuies most of the time. As showrig higher

in Table V, even only one module of hardware LZW decom-
pression algorithm is implemented for the time evaluation, REFERENCES
the implementation on FPGA is still faster than on the CPU.
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