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Abstract—LZW algorithm is one of the most important com-
pression and decompression algorithms. The main contribution
of this paper is to present an efficient hardware architecture
of LZW decompression algorithm and to implement it in an
FPGA. In our implementation, the codes of a compressed file
is read one by one, and the dictionary table is continuously
updated until the table is full. For each code of the com-
pressed file, an inverse of string corresponding to this code
is sequentially written to an output buffer. The length of this
string and the address of the forefront of this string is stored.
The inverse of string can be output reversely from the output
buffer using the stored length and forefront address. Since
output buffer uses dual-port block RAMs, input of the inverse
strings and output of the original strings are performed in
parallel. The experimental results show that our FPGA module
of LZW decompression on Virtex-7 family FPGA uses 287 slice
registers, 282 slice LUTs and 7 block RAMs with 36k-bit. One
LZW decompression module is more than 2 times faster than
sequential LZW decompression on a single CPU. Since the
proposed FPGA module uses a few resources of the FPGA,
we implement 34 LZW decompression modules which works
in parallel in the FPGA. In other words, our implementation
runs up to 64 times faster than sequential LZW decompression
on a single CPU.

Keywords-LZW, decompression, FPGA, block RAMs

I. I NTRODUCTION

Data compression is a method of encoding rules that sub-
stantially reduces the total memory space to store or transmit
a file in digital communications and data processing. Two
kinds of data compression are used in different areas. One
of these is lossy data compression that is commonly used
to compress images. Some details of the image is losed
and can never be recovered. Therefore, decompression of
lossy compressed images does not recovers the same images.
The other is lossless data compression that preserves all
information of the original file. We can obtain the intact files
by the decompression of lossless compressed files. The most
famous compression algorithms are LZ-based algorithms
such as LZ77 [1], LZ78 [2] and LZW [3]. LZ77 algorithm
is to find the longest string of pending part of a file, that
matches to the string in processed part of the file. Hence,
it is not well for large volumes of arbitrary data. LZ78
algorithm creates a dictionary table that stores unmatched
strings. LZ78 algorithm outperforms LZ77 algorithm for

compression of large volumes of arbitrary data [4]. The
speed of LZ78 algorithm depends on finding the longest
matching string from the dictionary table. However, not all
of the strings stored in the table have the same length, it
wastes a lots of memory spaces in hardware implementation.
LZW algorithm is proposed to reduce the large memory
required in hardware implementation of LZ78 algorithm.
The dictionary of LZW algorithm is initialized with the
underlying character set and built up from top to buttom.
Each entry of dictionary of LZW algorithm represents a
string. Instead of storing entire string in the dictionary, each
entry includes one character and one pointer . The character
is the last character of corresponding string. The pointer
points to an entry which represents the string excluding
the last character. We can obtain the inverse of string by
recursively accessing the entries of the dictionary depend-
ing on stored pointers. In this paper, we focus on LZW
compression which is used in Unix unilitycompress and in
GIF image format. LZW compression is included in TIFF
file format standard [5], which is widely used in the area
of commercial digital printing. Since dictionary tables are
created by reading input data one by one, LZW compression
and decompression are hard to parallelize. The main goal of
this paper is to develop an efficient hardware architecture to
maintain the dictionary and implement it in an FPGA.

An FPGA (Field Programmable Gate Array) is an inte-
grated circuit designed to be configured by a designer after
manufacturing. It contains an array of programmable logic
blocks, and the reconfigurable interconnects allow the blocks
to be inter-wired in different configurations. Since any logic
circuits can be embedded in an FPGA, it can be used for
general-purpose parallel computing [6]. Recent FPGAs have
embedded DSP slices and block RAMs. The Xilinx Virtex-7
family FPGAs have DSP slices, each of which is equipped
with a multiplier, adders/subtracters, logic operators, regis-
ters, etc [7]. A DSP slice also has pipeline registers between
operators to reduce the propagation time. A block RAM is an
embedded dual-port memory supporting synchronized read
and write operations, and can be configured as a 36k-bit or
two 18k-bit dual port RAMs [8]. Since FPGA chips maintain
relatively low price and its programmable features, it is
suitable for a hardware implementation of image processing
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methodto a great extent. They are widely used in consumer
and industrial products for accelerating processor intensive
algorithm [9], [10], [11], [12], [13], [14].

There is some research for accelerating LZW decom-
pression which are implemented on hardware device as
FPGAs or VLSI. Various accelerators have been proposed
by different manufacturers. LZWR3 Core by Helion [15]
provides a decompression rate of 180.75MBytes/s clocked at
226MHz in Xilinx Virtex-5 FPGA. Lin [16] gives a compar-
ative decompression rate within the range 25∼83MBytes/s
clocked at 100MHz, where parallel fixed-length dictionary
tables are used. Navqi [17] provides a decompression rate
of 140∼160MBytes/s clocked at 50MHz in Xilinx Virtex-
2 FPGA. For each compressed image which is stored in
a file, it is decompressed while the original image is used
Hence. decompression is performed more frequently than
compression, we say that LZW decompression is more
important than the compression.

The main contribution of this paper is to present an
efficient hardware LZW decompression algorithm and to
implement it in an FPGA. Our FPGA module of hardware
LZW decompression on Virtex-7 family FPGA uses uses
287 slice registers, 282 slice LUTs and 14 block RAMs with
18k-bit. In our implementation, the updating of dictionary
tables is continuously performed every 2 clock cycles, while
the operation of writting out characters is performed in
parallel. Since updating of dictionary tables only depends on
the input compressed codes and faster than the operation of
writting out characters, the original characters are output by
traversing the dictionary tables without validating whether
the coresponding entry of dictionary has been updated or
not. The experimental resultls show that our hardware LZW
decompression module runs 2.1 times faster than sequential
LZW decompression on a single CPU. Since the decompres-
sion rate is data dependent, according to the experimental
results, the decompression rate of our module is up to
279.84MBytes/s while the compression ratio of input file
is high. Even if the compression ratio is low, our module
still has a decompression rate of 183.38MBytes/s. Since the
proposed FPGA module uses only a few resources of the
FPGA, we implement 34 LZW decompression modules in
FPGA, where all modules works in parallel. Our implemen-
tation of 34 paralleled modules runs up to 64 times faster
than sequential LZW decompression on a single CPU.

This paper is organized as follows. Section II reviews
the LZW compression and decompression algorithms. We
also show a hardware LZW decompression algorithm in this
section which is suitable to be implemented in a FPGA.
In Section III, we show an efficient FPGA implementation
of the hardware LZW decompression algorithm. Section IV
shows the experimental results of the performance of the
hardware LZW decompression algorithm. Finally, we con-
clude this paper in Section V.

II. LZW COMPRESSION AND DECOMPRESSION

The main purpose of this section is to review LZW com-
pression and decompression algorithms. Please see Section
13 in [5] for details.

The LZW (Lempei-Ziv-Welch) [3] lossless data compres-
sion algorithm gives high compression efficiency. In this
algorithm, an input string of characters is compressed into
a series of codes using a dictionary table that maps string
into fixed-length codes. The dictionary of LZW algorithm
is initialized with the underlying character set and built
up from top to buttom. If the input file is an image, the
underlying character set may be 0∼255 represented by 8-
bit. In general, the compression ratio is improved as the
address space of dictionary table increases. However, the
total number of entries of the dictionary is always 4096
since the improvement is of little significance beyond this
number. The LZW compression algorithm reads characters
of input file one by one and search for the longest matched
string in the dictionary table. It writes the index of entry
of the matched string as the output code. Subsequently, it
concatenates the matched string and the next character to add
it into the dictionary as a new entry. LetX = x0x1 · · ·xn−1

be the characters of input file andY = y0y1 · · · ym−1

be compressed codes. For simplicity, we assume that an
input string includes 4 charactersa, b, c and d. Let S
be a string table which maps a string to a code, where
the code corresponds to index of table. The string table
S is initialized asS(a) = 0, S(b) = 1, S(c) = 2 and
S(d) = 3. New code is assigned to a string by performing
“AddTable” operation. For example, after initialization ofS,
if AddTable(cb) is performed,S(cb) = 4 holds. The LZW
compression algorithm is described as follows:

[LZW compression algorithm]
for i← 0 to n− 1 do

if(Ω ∥ xi is in S )
Ω← Ω ∥ xi;

else Output(S(Ω)); AddTable(Ω ∥ xi); Ω← xi;
Output(S(Ω));

where “∥” denotes the concatenation of characters andΩ
denotes a string.

Table I shows the compression flow of an input string
“cbcbcbcda”. First, “x 0 = c” is read from input file. Since
Ω ∥ x0 = c is in S, Ω← c is performed. Subsequently, the
next character “x1 = b” is input. SinceΩ ∥ x1 = cb is not in
S. S(c) = 2 is output as a code. Moreover,Ω ∥ x1 = cb is
mapped to 4, more specifically,S(cb) = 4 holds.Ω← x1 =
b is performed. In the same way, we can confirm that series
of codes 214630 is output as well asS(cb) = 4, S(bc) =
5, S(cbc) = 6, S(cbcd) = 7, S(da) = 8 are added to table.

We show LZW decompression algorithm on which we
focus in this paper. LetC be the dictionary of decompression
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Table I
LZW COMPRESSION FLOW FOR INPUT STRINGX = cbcbcbcda

i xi Ω S Y
0 c − − −
1 b c cb(4) 2
2 c b bc(5) 1
3 b c − −
4 c cb cbc(6) 4
5 b c − −
6 c cb − −
7 d cbc cbcd(7) 6
8 a d da(8) 3
9 − a − 0

which is the inverse of tableS. For example, ifS(cb) =
4, C(4) = cb holds. TableC is initialized asC(0) = a,
C(1) = b, C(2) = c and C(3) = d. Let Cf (i) denote
the first character of corresponding string of codei. For
example,Cf (4) = c while C(4) = cb holds. The LZW
decompression algorithm reads a seriesY of codes one by
one and adds an entry of the table. It writes a stringX at the
same time. The LZW decompression algorithm is described
as follows:

[LZW decompression algorithm]
Output(C(y0));
for i← 1 to m− 1 do

if(yi is in C )
begin

Output(C(yi));
AddTable(C(yi−1) ∥ Cf (yi));

end
else

begin
Output(C(yi−1) ∥ Cf (yi−1));
AddTable(C(yi−1) ∥ Cf (yi−1));

end

Table II shows the decompression flow for a series of
codes214630. The character(C(2) = c) of the first code
“2” is output. Next, the codey1 = 1 is input. Sincey1 = 1
is in C, C(1) = b is output and stringC(y0) ∥ Cf (y1) = cb
is added toC(4). Then, next codey2 = 4 is input. Since
y2 = 4 is in C, C(4) = cb is output and stringC(y1) ∥
Cf (y2) = bc is added toC(5). Next, sincey3 = 6 is not
in C, C(y2) ∥ Cf (y2) = cbc is output and stringcbc is
added toC(6). It is simple to confirm that stringcbcbcbcda
is output as well ascb, bc, cbc, cbcd, da are added to table.

We will modify LZW decompression to implement it
in the FPGA. We define several notations before showing
the hardware LZW decompression algorithm. We assume
that X = x0x1 · · ·xn−1 is a string of characters that are
selected from a underlying alphabet set, where the alphabet
set consists ofk charactersα(0), α(1), . . ., α(k − 1). The
same as the example above, we assume thatk = 4 holds as

Table II
LZW DECOMPRESSION FLOW FOR INPUT CODESY = 214630

i yi C X
0 2 − c
1 1 cb(4) b
2 4 bc(5) cb
3 6 cbc(6) cbc
4 3 cbcd(7) d
5 0 da(8) a

Table III
THE VALUES OFp, L, Cf AND C IF Y = 214630

i p(i) Cf (i) L(i) C
0 NULL a 1 a
1 NULL b 1 b
2 NULL c 1 c
3 NULL d 1 d
4 2 c 2 cb
5 1 b 2 bc
6 4 c 3 cbc
7 6 c 4 cbcd
8 3 d 2 da
9 0 a - -

4 charactersα(0) = a, α(1) = b, α(2) = c andα(3) = d.
Let Y = y0y1 · · · ym−1 denote the compressed series of
codes. Each of the firstm− 1 codesy0, y1, · · ·, ym−2 has
a corresponding AddTable operation such that the number
of entries of tableC is k+m− 1. Let p denote the pointer
table using input codeY :

p(i) =

{
NULL, if(0 ≤ i ≤ k − 1)
yi−k, if(k ≤ i ≤ k +m− 1)

(1)

We traverse pointer tablep until reaching NULL.
Let p0(i) = i and pj+1(i) = p(pj(i)) for all j ≥ 0 and

i. More specifically,pj(i) is the code where we reach from
codei in jth pointer traversing operation. LetL(i) be an in-
teger that satisfiespL(i)(i) =NULL andpL(i)−1(i) ̸=NULL.
Let Cf be a character table defined as follows:

Cf (i) =

{
α(i), if(0 ≤ i ≤ k − 1)
Cf (p(i)), if(k ≤ i ≤ k +m− 1)

(2)

We note thatCf (i) represents the first character ofC(i).
Also, since each code ofyi(k ≤ i ≤ k + m − 1) has a
corresponding AddTable operation as shown in LZW decom-
pression before, we must notice that ifk ≤ i ≤ k +m− 2,
the last character ofC(i) equals toCf (i + 1). Hence, we
can define stringC(i) as follows:

C(i) =

{
Cf (i), if(0 ≤ i ≤ k − 1)
T (i), if(k ≤ i ≤ k +m− 2)

(3)

where T (i) denotesCf (p
L(i)−1(i)) ∥ Cf (p

L(i)−2(i) +
1) · · ·Cf (p

0(i)+ 1). Table III shows the values ofp, Cf , L
andC if Y = 214630.
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Next, we show the flow of the hardware LZW decompres-
sion which can be implemented in a FPGA. This algorithm
is performed with 3 parts as follows:
Part 1 Update dictionary table
Part 2 write inverse of corresponding string to memory
Part 3 read string reversely from memory to output

Part 1 of hardware LZW decompression algorithm updates
pointer tablep and character tableCf sequentially. For
i(0 ≤ i ≤ k − 1), p andCf are initialized which are con-
figured as virtual memory space occpuying any memories
resources. For i(k≤ i ≤ k + m − 1), p is updated with
the values of input codes. The first characters ofC(i) are
obtained to update tableCf . We show Part 1 of hardware
LZW decompression algorithm as follows:

[Part 1 of hardware LZW decompression algorithm]
for i← 0 to k − 1 do

p(i)← NULL; Cf (i)← α(i);
for i← k to k +m− 1 do

p(i)← yi−k; Cf (i)← Cf (p
1(i));

In Part 2 of hardware LZW decompression algorithm, for
each compressed codeyi(0 ≤ i ≤ m−1) of Y , characters of
corresponding stringC(i) is reversely read out from table
Cf by traversing pointer tablep. At the same time with
traversing operation, the length of string is also computed
and stored inL(i). For example, ifC(4) = cb holds,cb is
read out in the order asb → c. The inverse of strings are
sequentially written to an output memory as a buffer. Let
b denote this output memory andaddr denote the current
writting address of it. The writting operation ofb is from top
to bottom. While the last character of inverse of string for
one code is written tob, the lengthL(i) and current address
addr are stored in another table defined ast, whereaddr
now represents the address of the first character ofC(i). The
details of Part 2 of hardware LZW decompression algorithm
are shown as follows:

[Part 2 of hardware LZW decompression algorithm]
for i← 0 to m− 1 do

j ← yi;
while(p(j) ̸= NULL)

b[addr]← Cf (j + 1); j ← p(j);
L(i)← L(i) + 1; addr ← addr + 1;

b[addr]← Cf (j); L(i)← L(i) + 1;
t[i]← {L(i), addr}; addr ← addr + 1;

In Part 3 of hardware LZW decompression algorithm,
the lengthL(i) and addressaddr of the first of string
are read from tablet one by one. Then, for each pair of
addr and L(i), we read string reversely fromaddr until
L(i) characters are all read out from output memoryb. The
reading operation ofb is bottom to top which is opposite to

writting operation of it. Part 3 is shown as follows:

[Part 3 of hardware LZW decompression algorithm]
for i← 0 to m− 1 do
{L(i), addr} ← t[i];
while(L(i) ̸= 0)

Output(b[addr]);
L(i)← L(i)− 1; addr ← addr − 1;

In our implementation, we use dual-port mode block
RAMs of FPGA to implement the tablesp, Cf , b. Hence,
the writting and reading operations of these tables can be
performed concurrently. In other words, the operation of
3 Parts of hardware LZW decompression algorithm are
implemented in parallel that we show this in the next section.

III. O UR FPGA ARCHITECTURE FORLZW
DECOMPRESSION

This section describes our FPGA architecture for the
hardware LZW decompression algorithm using block RAMs
in Xilinx Virtex-7 FPGA. We use Xilinx Virtex-7 Family
FPGA XC7VX485T-2 as the target device [18].

In this paper, we focus on the decompression of a gray-
scale image with 8-bit intensity level. First, we show the
compression of the image. The input file contains a string
of integers within the range[0, 255]. Therefore, the dic-
tionary table of LZW compression is initialized with the
underlying integers set[0, 255]. Also, code 256 is reserved
as “ClearCode” which denotes to clear the table. Code 257
is reserved as “EndOfInformation” which represents the end
of the input file. Then, dictionary table is built up from 258
by performing AddTable operation. We configure the size of
table to be 4096 in this paper. Hence, “ClearCode” is output
after the entry 4095 is added to the table. Subsequently,
the table is initialized and bulit up from 258 again. The
same operation is repeated until all pixels of input image
are converted to codes. “EndOfInformation” is output after
the last pixel of input image is compressed to a code. We
note that a string of codes is seperated by “ClearCode”
which is called a code segment. Each code segment has
4096−258 = 3838 codes except the last one which has less
codes.

In our implementation, our LZW-based module decom-
presses all code segments one by one. This module contains
pointer table p and character tableCf . First, a virtual
memory space with the range[0, 257] is reserved. The tables
take up the address space but do not actually occupy any
part of table hardware. Since tablep andCf both have 3838
entries, the size of tablep is 12×3838 = 44.97K-bit and the
size of tableCf is 8 × 3838 = 29.98K-bit. Hence, we use
3 and 2 18K-bit block RAMs to implement pointer table
p and character tableCf , respectively. Moreover, we use
these block RAMs as dual-port mode memory [8] as shown
in Figure 1. A dual-port block RAM has two set of ports

- 15 -



0

257

(0) 258

(3837) 4095

12bit

table p

8bit

table C

f

0

257

(0) 258

(3837) 4095

DIB

ADDRB

WEB

CLKB

DOA

block RAM

A

B

DOB

DIA

ADDRA

WEA

CLKA

Figure 1. Dual-port block RAM and memory configurations of tablep
andCf

such as Port A and Port B which work independently. The
architecture of our LZW decompression module is shown
in Figure 2. Since the updating of tablep andCf is input
code dependent, we show it first. For tablep, Port B of
it is used to write all codes ofY into the block RAM
one by one, where the codes are used as pointers during
traversing operation. We notice that codes ofY should have
been written into the block RAM from entry 258. Since a
virtual memory space with the range[0, 257] is considered,
the table is actually built up from entry 0 to bottom. More
specifically,y0 is written into entry 0 of tablep. For table
Cf , Port A of it is used to update this table. The same as the
table p, Cf (i)(0 ≤ i ≤ 257) is reserved as virtual memory
space.Cf is also built up from entry 0. More specifically,
Cf (258) is written into entry 0 of tableCf . As shown in
previous section, if0 ≤ i ≤ 257, Cf (i) = i holds. Also, if
258 ≤ i ≤ 4095, Cf (i) = Cf (p(i)) = Cf (yi−258) holds.
For example, we want to updateCf (i)(i ≥ 258) which cor-
responds toyi−258. If yi−258 < 258, Cf (yi−258) = yi−258

holds, then we update this table withyi−258. Otherwise,
if yi−258 ≥ 258, we need to read out the value of entry
yi−258 from tableCf . Actually, since memory space[0, 257]
is reserved, we read outCf (yi−258 − 258) to update this
table. As shown in Figure 2, we write the new entry through
port DIA of tableCf using a multiplexer. The multiplexer
select the value between the input codeyi−258 and output
Cf (yi−258 − 258) of port DOA. Since updating tablep and
Cf only depends on the input code without traversing the
tables, all entries of two tables are concurrently updated one
by one. It takes 2 clock cycles to update each entry until the
last code of one code segment is input. In other words, all
input codes are input once every 2 clock cycles.

Next, we will show how to write an inverse of string to
output buffer by traversing tablep andCf . Since traversing
operation of tablep andCf is performed for each code, it
takes more than 2 clock cycles to obtain the inverse of string
for one code. Hence, we use a code buffer to store the input
codes and to process them one by one afterwards, where
the code buffer is configured as a FIFO(First-In-First-Out)
memory using block RAMs. We use an output buffer to write
the inverse of strings in it. The output buffer is configured

as dual-port block RAM as shown in Figure 1. After the
inverse of string is written into the output buffer through
Port B of it, we can obtain the decompressed characters by
reading the inverse reversely through the Port A of it. If
the code buffer is not empty, we read the first code from
code buffer to output the corresponding string of this code.
For example, for the codeyi(0 ≤ i ≤ n − 1) from code
buffer, we can obtain an inverse ofC(yi) which is the
string corresponding to codeyi by traversing the tablep
and Cf . First, if yi < 258, C(yi) = Cf (yi) = yi holds,
and the length of stringC(yi) must be 1. The stringC(yi)
with length 1 is written into output buffer through port
DIB of the output buffer. Otherwise, ifyi ≥ 258, we read
stringC(yi) reversely by traversing the tablep andCf and
write it to output buffer. As shown in Figure 2, Port A
of table p is used for traversing operation. Ifyi ≥ 258,
yi − 258 is computed and connected to portADDRA of
table p. The pointerp1(yi − 258) = p(yi − 258) will
be read out and feed back to portADDRA through a
multiplexer. Concurrently, characterCf (yi−258+1) is read
out from tableCf through portADDRBof tableCf which
depends on portADDRA of table p as shown in Figure.
This character will be written into output buffer in the next
clock cycle. Next, we see the tablep again, if the pointer
p1(yi−258) ≥ 258, it is clearly that the traversing operation
has not reached the dead end. The pointerp1(yi − 258) is
fed back to portADDRA through a multiplexer. Then, the
next pointerp2(yi − 258) = p(p1(yi − 258)) will be read
out from tablep. Also, at the same time, depending on the
pointer p1(yi − 258), characterCf (p

1(yi − 258) + 1) is
read out from tableCf . The traversing operation will not
stop until the pointerpL(i)−1(yi − 258) is read out, where
p(pL(i)−1(yi − 258)) =NULL holds andL(i) denotes the
length of corresponding string. We use a counter to accumu-
late L(i) during traversing operation. For traversing opera-
tion of codeyi, it is clearly that charactersCf (yi−258+1) ∥
Cf (p

1(yi − 258) + 1) ∥ · · ·Cf (p
L(i)−1(yi − 258) + 1) are

written into the output buffer one by one. In other words,
inverse of stringC(yi) are store in output buffer from top
to bottom. As soon as the last character of inverse of string
C(yi) is written into output buffer, the lengthL(i) and
current writting address of output buffer are store in tablet,
where tablet is configured as a FIFO memory using block
RAMs.

For each code stored in code buffer, the traversing oper-
ation is performed to written inverse of the corresponding
string to output buffer through portDIB of output buffer.
Moreover, the length and address of first character of the
string is stored in tablet. Next, we show how to otuput
strings reversely from output buffer using the other port of
output buffer. First, if tablet is not empty, we obtainL(i)
and addr(i) from this table, whereL(i) is the length of
string C(yi) of codeyi. Then, reading operation of output
buffer starts at addressaddr(i) through portADDRA.L(i)
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Figure2. The outline of our FPGA architecture for hardware LZW algorithm

is decreased during the reading operation. The value of
addr(i) is decreased every clock cycle untilL(i) reaches 0.
In other words, inverse ofC(yi) is output reversely by the
reading operation. Since output buffer is configured as dual-
port block RAM memory, the writing and reading operation
of output buffer are performed in parallel. Moreover, the
updating of tablep andCf are also performed in parallel. If
all codes of this code segment are decompressed, the codes
of new code segment will input into the LZW decompres-
sion module. The same procedure is repeated without re-
initializing all the tables. The module terminates as soon as
all codes of input file are decompressed and then wait for
the next input file.

In our implementation, each entry of tablep andCf is
updated every 2 clock cycles. For a certain code stored in
code buffer, an inverse of the corresponding string is written
into output buffer continuously. In other words, if string
containsL characters, it takesL clock cycles to write it
into output buffer. If the stringC(yi) of a certain code
yi is long, it takes many clock cycles to write the string
into output buffer. And during the writting operation of
code yi, the next yi+1 can not be performed. However,
the input codes are input every clock cycles. Therefore,
the number of codes which are stored in code buffer will
increase. To avoid the overflow of the code buffer, the
size of code buffer is12 × 3838 = 44.97K-bit which
occupies 3 18K-bit block RAMs. We use 3 and 2 18K-bit

block RAMs to implement the tablep and Cf . The size
of output buffer is8 × 3838 × 2 = 59.97K-bit that we
use 4 18K-bit block RAMs to implement it. The depth of
output buffer is described with 13-bit. Hence, the size of
table t is (12 + 13) × 1280 = 31.25K-bit. We use 2 18K-
bit block RAMs to implement it. Totally, 14 18K-bit block
RAMs are used in our implementation of hardware LZW
decompression algorithm.

IV. EXPERIMENTAL RESULTS

This section shows the implementation results of the
hardware LZW decompression algorithm in the FPGA.

We have implemented the proposed architecture for hard-
ware LZW decompression algorithm and evaluated it in
VC707 board [19] equipped with the Xilinx Virtex-7 FPGA
XC7VX485T-2. According to the implementation results,
one LZW decompression module uses 287 slice registers,
283 slice LUTs and 14 18K-bit block RAMs. We implement
34 LZW decompression modules which work in parallel in
the FPGA. The experimental results of the implementation
is shown in Table IV. We also use Intel Xeon CPU E5-
2430 (2.2GHz) to evaluate the running time of sequential
LZW decompression. We have used three gray scale images
with 4096 × 3072 pixels as shown in Figure 3, which are
converted from JIS X 9204-2004 standard color image data.
Table V shows the time of decompression on CPU and
FPGA and the compression ratio (original image size

compressed image size ).
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“Crafts” “Flowers” “Graph”

Figure3. Three gray scale image with4096× 3072 pixels

The image “Graph” has high compression ratio since it
has large areas with simliar intensity levels. The image
“Crafts” has small compression ratio since it has small
details. Both CPU and FPGA decompression take more
time to create dicitionary tables if the image has small
compression ratio. In LZW decompression on CPU, the
operation of creating dictionary tables occpuies most of
the computing time. In our implementation on FPGA, the
operation of creating tables is performed independently, and
writting characters to output buffer and output characters
from output buffer are paralleled, hence, the operation of
outputing characters occpuies most of the time. As shown
in Table V, even only one module of hardware LZW decom-
pression algorithm is implemented for the time evaluation,
the implementation on FPGA is still faster than on the CPU.
For example, it takes 19674631 clock cycles to decompress
image “Crafts”, i.e., 19674631

300.661MHz = 65.438ms. It takes
18339574 clock cycles to decompress image “Flowers”, i.e.,

18339574
300.661MHz = 60.998ms. To decompress image “Graph”,
it only takes 12892927 clock cycles, i.e.,12892927300.661MHz =
42.882ms. Hence, for gray scale image “Graph” which has
high compression ratio with 4096×3072 pixels, the LZW
decompression module output 4096×3072×1Byte original
data in42.882ms, we say the decompression rate of module
is 4096×3072×1Byte

42.882ms = 279.84MBytes/s. Since the proposed
FPGA module uses a few resources of the FPGA, we
implement 34 modules of hardware LZW decompression
in a FPGA, where all modules work in parallel. In other
words, our implementation runs up to 64 times faster than
sequential LZW decompression on a single CPU.

Table IV
IMPLEMENTATION RESULT OF ONE MODULE OF HARDWARELZW

DECOMPRESSION ALGORITHM

numberof modules 1 34 Available
Slice Registers 287 (0.05%) 9894(1.63%) 607200

Slice LUTs 283 (0.09%) 9302(3.06%) 303600
18K-bit block RAMs 14 (0.67%) 476 (23.1%) 2060

I/O 25 (3.57%) 564 (80.6%) 700
Clock frequency [MHz] 300.661 264.13 —

V. CONCLUSIONS

We have presented a hardware LZW decompression al-
gorithm of decompressing images. It was implemented in

Table V
EXPERIMENTAL RESULTS(MILLISECONDS) FOR THREE IMAGES

images compression time of time of Speedup
ratio CPU FPGA ratio

“Crafts” 1.43:1 141.534 65.438 2.16:1
“Flowers” 1.72:1 127.136 60.998 2.08:1
“Graph” 36.72:1 75.9 42.882 1.77:1

an Virtex-7 family FPGA XC7VX485T-2. According to the
implementation results, one LZW decompression module
uses 287 slice registers, 283 slice LUTs and 14 18K-bit
block RAMs, where these are very few of FPGA resources.
By simulation, one FPGA module of LZW decompression
is more than 2 times faster than sequential LZW decom-
pression on a single CPU. We also implemented 34 LZW
decompression modules in parallel which attains a speed
up factor of 64 over the sequential implementation on the
CPU. Our module provides a decompression rate up to
279.84MBytes/s which is higher than other research. Since
the decompression rate is data dependent, the decompression
rate can be even better if the compression rate of input file
is higher.
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