
On the Development of a Hardware Library for

Embedded Image Processing Systems Based

on Reassemble Functional Blocks

Takanori Kurihara

Graduate School of CIS

Hosei University

Tokyo 184-8584 Japan

takanori.kurihara.3z@stu.hosei.ac.jp

Yamin Li

Faculty of Computer and Information Sciences

Hosei University

Tokyo 184-8584 Japan

yamin@hosei.ac.jp

Abstract—With rapidly increased demands for machine vision,
many image processing circuits for embedded systems have been
developed recently. However, the implementation and verification
of new algorithm circuits require many tasks such as the
interface design and the timing adjustment. This paper aims
to simplify these tasks by implementing a hardware library for
image processing. The library contains bus and device interfaces
and basic image processing function modules. These modules
have a simple interface and can be easily reassembled like

building blocks. It means that it is possible to configure various
algorithmic blocks by combining existing blocks. In the latter part
of the paper, we show how to construct a sample system by using
the hardware library and compare the system performance with
the software implementation. The sample implements a corner
detection system based on the Harris algorithm. The implemented
system is 64.63 times faster than the software implementation
with the OpenCV library running on an ARM CPU. In the future,
we will expand and enhance our library to respond to various
image processing algorithms.

Index Terms—image processing; hardware library;

I. INTRODUCTION

Embedded systems that use “eye” have been attracting a

significant amount of research attention in recent decades.

For example, in the automotive system, various algorithms

have been proposed for enhancing the safety and making

the automatic driving for practical use. However, when we

integrate algorithms in real systems, it is necessary to devise

on the implementation. This is due that the general image

processing algorithms require large processing capabilities.

In other words, it is difficulty in terms of cost to mount a

general purpose processor with enough performance for image

processing to embedded systems. For this reason, the image

processing circuit dedicated to a single function for embedded

systems is being studied.

Among them, Microsoft’s Kinect [1] is an important de-

vice in embedded systems for computer vision. This product

incorporates a dedicated processor for performing functions

such as recognition of the skeleton. By using the processor,

Kinect performs the complex recognition process without

compressing the gaming platform resources. In addition to this

case, various versions of the embedded hardware, such as a

car driving assist system, are being actively studied [2], [3].

But of course, it is difficult to design this kind of hardware

for developers or researchers whose specialty is in software

and algorithm design. It needs the knowledge of hardware

design and implementation. Furthermore, it is not enough

only to implement the algorithmic core part. A real system

actually requires timing and function control logic, DMA

(direct memory access) controller, device controller, and so

on. This complexity of the system implementation work ob-

structs the demonstration of new ideas of image processing.

While the new algorithms in the image processing field are

being proposed, it becomes more important to accelerate the

execution of the algorithms with high-speed hardware circuits.

In this work, we aim to solve these obstacles of the system

implementation. As one solution, we propose and provide a

hardware library that contains the wrapper (bus interface)

modules and common functional blocks of image processing.

We design the function blocks so that the reassemble of them

becomes an easy work and therefore it makes the implemen-

tation of the system easy based on block diagrams. Thus,

developers will be able to focus on the algorithm/architecture’s

core logic by using this library. As a result, it becomes easier

for developers to verify and implement the new system than

the use of the existing development flow.

II. BACKGROUND AND MOTIVATIONS

Reflecting the growing demand of image or video process-

ing functions for many devices, vendors are offering products

that pack many image processing functions in the form of

intellectual property (IP) cores. For example, Altera’s Video

and Image Processing (VIP) Suite [4] includes various func-

tions such as color space conversion, alpha blending mixer, and

2D filtering and scaling. Xilinx Inc. also sells similar product,

such as Video and Image Processing Pack (VIPP) [5].

These suites or packages provide a variety of functions

that contribute to the rapid prototyping and development of

products. However, using these products is not suitable for

academic research. These IP cores are implemented as a black

box; it is impossible for users to expand or revise the functions.

As an example, when using Altera VIP suite that contains 3×3,

5×5, and 7×7 filtering IP cores, it is impossible to reuse these

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 5, Number 1, pages 20–25, January 2016

- 20 -

IPs in the case of implementing a 9×9 filtering function. In

other words, a new module must be implemented completely

that allows 9×9 filtering. Moreover in this case, it is also

necessary to implement a compatible module that corresponds

to each interface of other IP blocks for the cooperation with

them.

In this paper, we aim to achieve the high flexibility of

the image processing systems’ construction. As a specific

approach, we propose the hardware IP library based on the

building block-like architecture. Block components of the

library are able to be freely combined and we can construct

the desired features by combining the blocks.

Furthermore, we adopt a simple interface to functional

blocks for easily implementing the additional (user specific)

blocks. To solve the shortage of functions of the library, it is

only necessary to extend the existing blocks or implement a

new block based on the simple interface.

III. ARCHITECTURE OF HARDWARE LIBRARY

A. Aim and Structure of the Library

The aim of the library is to provide the ease of development

and reusability of the hardware components for embedded

image processing systems. Ease of development achieves

prototyping in a short period of time. Also, the existing

components with high reusability allow the construction of

various systems at low development cost. We designed the

system architecture and interface of components based on

these ideas.

In the field of image processing, algorithms are often

represented by a block diagram with a simple data flow. Each

block receives the image data and outputs the result of some

operations. Our basic idea is based on the modularization of

these “Blocks” which are designed in a hardware description

language. We can construct desired systems by representing

the block diagram using these Blocks. Such data flow and

block diagram-like architecture makes it easy to understand

for software engineers. In addition, we also considered that

this construction can be done through a high-level synthesis

based on the software description in the future.

In our library, as the most important thing, all image pro-

cessing functions are constructed from primitives or combined

functional Blocks. The “Filtering Block by kernel convolution”

and “Color conversion Block” are two examples of such

functions. These Blocks have a simple and unified interface

so that they can be connected each other. When the complex

features are needed, we can make up a new Block easily

by combining the existing Blocks. Also it is useful for the

implementation of a completely new or system-specific feature

by combining the existing blocks partially. For these cases, the

simple interface makes it easy to implement a new block.

Fig. 1 shows the architecture overview of the system

adopted by our library. Image Processing Unit is the outside

layer that connects to a system bus. Image Processing Blocks

constitute the core part of the library.

Image Processing System

Image Processing Unit

Image Processing Block

Processing Block - DMA IF intermediation

Pixel Serializer

Pixel Parallelizer

Split to Pixels

Pack to Bus transaction

Sync. pixel stream

Frame buffer

Register controller

Image input source

Read/Write Images

Display

Pixel Synchronizer

Control Registers Management

Camera Controller +

LCD Controller +

DMA Intrerface

Combined Blocks

Primitive Blocks

AXI4 Master Read IF

AXI4 Master Write IF

Burst Controller

AXI4-Lite Slave R/W IF Read/Write Registers

Accelarator with DMA IF

RAM Controller* + RAM*

Microprocessor*

System Specific Blocks*

Registers*

LCD*

Camera*

* Not included in Library

Fig. 1. Proposed architecture overview

B. System Architecture

Fig. 2 shows the block diagram of the system which will

be implemented with our library. The system consists of a

camera controller, an image processing unit, an LCD (liquid

crystal display) controller, a microprocessor for register control

(CPU), and memory (RAM) and its controller. The video

stream will be processed in the following steps.

1) The Camera Controller stores the captured image into

the memory.

2) The Image Processing Unit reads the captured image

from memory, and writes the processed image back to

the memory.

3) The LCD Controller reads the result image from the

memory and outputs it to the LCD.

The Image Processing Unit consists of multiple modules

which we will describe late. Except for the final image data,

the temporary data will not be written to the memory; they

are stored in the buffer inside the unit, in order to achieve the

high processing speed of the unit.

The library provides a template design of Image Processing

Unit to assist the implementation of the system. In most

cases, it is easy to construct a system based on the template.

In addition to the library of the Image Processing Unit, we

prepared a camera controller and an LCD controller for the

actual test. The CPU is used only for the register control of

each peripheral in principle, and the memory is used as the

- 21 -

Image

Processing

Unit

CPU

x32 Control Bus

x128 Data Bus

LCD

Controller

LCD

Camera

Controller

Camera

RAM

(with Controller)

Fig. 2. Template architecture of the image processing system

input frame buffer from camera and the output frame buffer

to the LCD controller.

In our system design, the AXI [6] bus standard is used. It

supports the DMA operation. In the Image Processing Unit,

the AXI bus interfaces and the DMA controller are provided.

We implemented two types of interfaces of the AXI bus: the

master interface for data transfer and the slave interface for

register control.

The master AXI bus interface performs the memory data

burst read and write. We designed it based on the AXI4

bus protocol. The information of the write destination or

read source area is stored in the registers inside the Image

Processing Unit. The slave AXI bus interface accepts register

write or read access from bus master such as the CPU. We

designed it based on the AXI4-Lite bus protocol.

The Image Processing Unit performs the operations based

on the commands stored in the registers that are written by

the program running on the CPU. Since the CPU never does

other applications than the command transfer, a low-cost CPU

can be used in our system.

The built-in camera controller supports the ITU-656 stan-

dard [7]. ITU-656 standard transfers the video data in the

YUV422 format which is defined in the ITU-601 standard [8].

It is possible to immediately extract 8-bit brightness (Y)

from YUV422 formatted pixel data. Because many image

processing algorithms or systems use only the brightness

information of image, this format is convenient for our system.

If other formatted camera is used, it is necessary to develop a

new controller that supports the standard. The LCD controller

performs the video output based on the VGA standard.

C. Image Processing Unit Architecture

The hardware library is mainly used to construct the Image

Processing Unit which connects to the AXI Bus. For the

easy use of the library, we prepare a template design of the

Image Processing Unit, as shown as in Fig. 3. Based on this

template, developers can re-configure the Image Processing

Unit by replacing registers and image processing blocks with

the modules provided in the hardware library to meet their

own requirements. The dark-gray blocks in the figure are the

system-specific parts that are changeable.

Image Processing Block

Image Processing Unit

AXI4 Master

Read IF

AXI4 Master

Write IF

Serializer Parallelizer

Pixel Sync

AXI4-Lite

Slave R/W IF

Registersflag

input
pixel

flag

processed
pixel

Data

Control

Burst

Ctrl

Fig. 3. Template block diagram of the image processing unit

The Image Processing Block is at the core of the Image

Processing Unit. Besides providing the image processing func-

tions, the other objective of the Image Processing Unit is to

simplify the interface of the Image Processing Block and hence

increase the productivity of the system. To achieve this objec-

tive, we provide the wrapper modules for the Image Processing

Block and incorporate them to the Image Processing Unit.

The wrappers mainly implement the following three functions:

1) DMA transfer of pixel data using the AXI Data Bus; 2)

acceptance of register control using the AXI-Lite Control Bus;

and 3) synchronization of the processed data based on the flag

signal.

The details of the Image Processing Block will be described

in the next subsection. The modules of AXI4 Master Read

IF (interface) and AXI4 Master Write IF perform the DMA

transfer of pixel data between the RAM and the Image

Processing Block. The modules of Serializer and Parallelizer

perform the conversion between parallel and serial data. The

commands in the Registers module are written by the CPU via

the AXI4-Lite Slave R/W (read/write) IF, and these commands

are used to control the operations of the Image Processing

Block and DMA controllers. The CPU can also read the

state information from the registers. The Pixel Sync module

performs the synchronization of the processed data based on

the flag signal which will be described in the next subsection.

When you try to build a system using the library, if the

data flow of your system matches the template, you can use

the pixel data transfer mechanism of the template. For the

small change, such as the modification of the number of bits

per pixel, it is possible to cope with the new system by re-

configuring the synthesis parameters. Even if you want to

create a different flow, by adding a set of modules related to the

pixel data transfer, it is possible to configure the system with

multiple inputs and outputs, like the stereo matching required.

However, in such a case, it is necessary to arbitrate the

multiple data transfers appropriately inside the block without

modifying the external interface. On the other hand, the

register control mechanism can be remained without changing

- 22 -

from the template in most cases, and it is enough to configure

your own system by adding or removing the system-specific

registers.

D. Image Processing Block Architecture

The Image Processing Block implements various image

processing functions, and a new block can be made up by

combining multiple blocks. The hardware library provides

some blocks of frequently used functions in various image

processing algorithms. In this paper, we refer such a basic

module as “primitive”. Fig. 4 shows an interface of a typical

primitive. The meaning of each port is listed in Table I. The

descriptions of some implemented primitives will be given in

the next section.

IDATA

IFLAG

CLK CE

ODATA

Control Signals

OFLAG

...

Fig. 4. Interface of a typical image processing primitive

TABLE I
PORT DESCRIPTIONS OF TYPICAL IMAGE PROCESSING PRIMITIVE

Port Description

IDATA Pixel data input.
Data width configured by synthesis parameter.

ODATA Pixel data output.

IFLAG Pixel flag input.

OFLAG Pixel flag output.

CLK Pixel clock input.
All image processing blocks are synchronized by the
clock.

CE Clock Enable input.
If CE is low, all image processing blocks stall their
pipelines.

Control Signals
(Any port name)

Signals obtained from the registers or other blocks.
They should be updated at idle or reset state.

The operations of the primitives are synchronized by the

signals CLK (clock) and CE (clock enable). The operations of

the primitives are determined by the control signals obtained

from the registers, constant parameters, or other blocks. In

principle, the input signals of a primitive are the pixel data

and flag, and the output signals are the processed pixel data

and delayed flag, corresponding to the latency of the pixel

processing inside the primitive. The flag shows the pixel

position in the image. It is used for the timing control of the

frame processing and process switching in the border region.

Developers can incorporate any other features to the system

by implementing additional blocks based on this interface.

Also it is possible to build complicated processing blocks by

combining multiple primitives and user defined blocks.

NxN shift register

Pixel Input

0, 0 0, 1 0, N-1

1, N-11, 1

 N-1,
 N-1

Delay: Line 1

Delay: Line N-2

Delay: Line 0

N-1,1

N-1 line buffers

1, 0

N-1,0

NxN Pixels Output

Fig. 5. Block diagram of the window buffer block

IV. IMPLEMENTATION OF PRIMITIVE BLOCKS

In this section, we describe the implementation of some fre-

quently used primitive blocks. These primitive blocks are fully

parameterized, and it is possible to optimize the configuration

for the target system.

A. Pixel Delay Block

Pixel Delay Block outputs the delayed data. The delay

amount in clock cycles is configured by the register. This

block is used as the synchronizer of pixel streams or the line

buffer. It is constructed by a dual-port RAM (DPRAM) that

can perform both the write and read operations independently

at the same time. We implement the DPRAM with the first-

in-first-out pixel buffering mechanism.

B. Window Buffer Block

Window Buffer Block provides the accesses to all the pixels

in a window area simultaneously. Many image processing

algorithms frequently require the information of the neighbor

pixels. And in most cases, the necessary area is a square region

that contains the focused pixel at the center. To achieve this

behavior, the Window Buffer Block is constructed with Pixel

Delay Blocks and shift registers as a line buffer as shown in

Fig. 5. For example, a 5× 5 window buffer can be generated

using four Pixel Delay Blocks and five 5-stage shift registers.

C. Convolution / Filtering Block

Filtering is a general operation in the image processing. This

operation needs the convolution as shown below.

Cx,y =
∑

i,j

Ix+i,y+j ·Ki,j

where I , K , and C are the input image, kernel matrix, and

result image, respectively.

The library provides this operation as the Convolution

Block. And also, we provide the Filtering Block that is

constructed with the Window Buffer and Convolution Block

for performing any filter by only giving the kernel matrix.

- 23 -

det(M) -

tr(M) 4
2 Threshold

Delay Plot

Primitive Block System Specific

Convolution

Y-Sobel
Kernel

Iy

Gaussian
Kernel

Convolution

Window
BufferIx

2

Ix Iy

Iy
2

Window
Buffer

Convolution

X-Sobel
Kernel

Ix
Gaussian

Kernel

Convolution

Window
Buffer

ConvolutionGaussian
Kernel

Convolution

Window
Buffer

a

b,c

d

Fig. 6. Block diagram of the Harris corner detector block

V. IMPLEMENTATION OF A SAMPLE SYSTEM

This section shows how to use the proposed hardware

library to quickly build an image processing system. As an

example, we implement a corner detection system based on the

Harris corner detection algorithm [9]. This approach requires

a calculation of the feature amount R(x,y) represented by the

following equation.

R(x,y) = det(M(x,y))− k · (tr(M(x,y)))
2

M =
∑

i,j

w(i, j)

[

Ix
2 IxIy

IxIy Iy
2

]

k ≈ 0.04 ∼ 0.15

where Ix and Iy denote the x/y-direction partial differential

image; det(M) and tr(M) means the determinant and the

trace of matrix M , respectively. This can be done by the

following translation.

• Partial differential image Ix, Iy can be represented by an

X- and a Y-axis Sobel filters.

• Weighted sum
∑

i,j w(i, j)[· · ·] can be represented by a

Gaussian Filter.

With these replacements, the matrix M(x,y) can be derived

in a sequence of very common blocks: Sobel filter, multiplier,

and Gaussian filter. These filters can be easily configured by

using the Filtering block. We use one Window Buffer Block

and two Convolution Blocks for Sobel filters because these

two filters share the same window. After that, we need to

implement only the circuit for calculating the determinant and

trace of M(x,y) and final feature quantity R(x,y). In this case,

for the 2×2 matrix M , determinant and trace will be calculated

by the following equations.

det

(

a b

c d

)

= ad− bc

tr

(

a b

c d

)

= a+ d

The implementation of these equations is not difficult be-

cause it can be calculated by the additions and multiplications.

In addition, we set k = 2−4 = 0.0625 in the R(x,y)

calculation. Thus the multiplying by k can be replaced by

shifting the data to the right by four bits.

We implement the system so that the detected corners are

marked on the original image. To achieve this effect, the post

processing and the original image delaying are required. Fig. 6

shows the block diagram of the Harris corner detector block.

The Threshold block controls the display of the corner marks

to the original image. Through implementing the top-level and

gray colored blocks in the figure, the corner detector block was

constructed. As demonstrated by X- and Y-axis Sobel filters,

the partial block sharing is also an advantage of this library.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the system

implemented in the previous section. To get the speedup, we

compare the system performance of the hardware-implemented

system with that of the software-implemented system. For the

evaluation of the actual implementation, we use an FPGA

(field programmable gate array) evaluation board which con-

tains a hardwired ARM CPU. As already mentioned in the

section III-B, the CPU’s calculation power is not required for

the hardware-implemented system because it performs only

the register control. However, in order to experiment under the

same conditions as much as possible (excepting the calculation

circuit), we use the same device for these experiments. We use

an Arrow SoCKit Development Board that mounts the Altera

Cyclone V SoC 5CSXFC6D6F31C6N device and 1 GB DDR3

SDRAM with hard wired SDRAM controller. Also, we use the

MTV-54K0DN CCD camera for capturing the image.

We use the Altera Quartus II 15.0.0 software for configuring

the system on FPGA device. The programmable logic capacity

of the FPGA and the utilization of the logic elements are

shown in Table II. In addition, the distribution of the used

logic elements is shown in Table III. The ALM (Adaptive

- 24 -

TABLE II
LOGIC CAPACITY AND UTILIZATION OF CORNER DETECTION SYSTEM

Used Available Utilization

ALMs 2,694 41,910 6%

Block memory bits 721,572 5,662,720 13%

DSP blocks 57 112 51%

TABLE III
LOGIC DISTRIBUTION OF THE CORNER DETECTION SYSTEM

Used Ratio

ALMs

Corner Detector 785.8 29%

LCD Controller 406.0 15%

Camera Controller 338.8 13%

Interconnect + Port 1,163.2 43%

Block memory bits

Corner Detector 704548 98%

LCD Controller 8576 1%

Camera Controller 8448 1%

Interconnect + Port 0 0%

DSP blocks

Corner Detector 49 86%

LCD Controller 7 12%

Camera Controller 1 2%

Interconnect + Port 0 0%

(a) Hardware implementation (b) Software implementation

Fig. 7. Result images of the corner detection system

Logic Module) in the table is a unit of the logic resource in

Altera’s FPGA device families. The VGA screen image during

the execution is shown in Fig. 7(a). The corners are indicated

by the green markers.

As described before, the software for the comparison runs

on the ARM CPU. The software is developed under the Linux

environment and implemented by using OpenCV 2.4.8 and

mainly the cv::goodFeaturesToTrack() function. We configured

each filter window with the size of 3×3, which is the same as

in the hardware-implemented system. The VGA screen image

during execution is shown in Fig. 7(b).

TABLE IV
PERFORMANCE OF THE CORNER DETECTION SYSTEM (3,000 FRAMES)

Processing Time (sec.) Average FPS

Software implemented 1189.21 2.52

Hardware implemented 18.40 163.03

The processing times for dealing with 3,000 frames are

shown in Table IV. The hardware implementation achieves

64.63 times faster performance in term of FPS (frames per

second) than the software implementation. The 163.03 FPS is

good enough for the real-time processing.

VII. CONCLUSION

In this paper, we proposed an architecture of a hardware li-

brary that facilitates construction of image processing systems

by reassembling block modules. The library provides various

basic functions of image processing as primitive blocks. It is

possible to realize various algorithms by flexibly combining

these blocks. In order to achieve the faster and easier imple-

mentation of the image processing systems, we have prepared

various useful primitive blocks which have a simple interface

for connecting each other. We have constructed a real image

processing system for the purposes of demonstrating the use

of the library and evaluating the performance compared with

that of the software implementation which runs on a general-

purpose processor.

In the future, we will develop more image processing blocks

and add them to the hardware library so that it will be able

to adapt to various kinds of image processing systems. And

also we will revise the architecture so that it has a more

user-friendly interface for the configuration of the systems.

This project is currently under development. We will make

the hardware library public-accessible via Internet.

REFERENCES

[1] Z. Zhang, “Microsoft kinect sensor and its effect,” MultiMedia, IEEE,
vol. 19, no. 2, pp. 4–10, 2012.

[2] D. Mandal, J. Sankaran, A. Gupta, K. Castille, S. Gondkar, S. Kamath,
P. Sundar, and A. Phipps, “An embedded vision engine (eve) for auto-
motive vision processing,” in Circuits and Systems (ISCAS), 2014 IEEE

International Symposium on, June 2014, pp. 49–52.

[3] C. Farabet, C. Poulet, and Y. LeCun, “An fpga-based stream processor
for embedded real-time vision with convolutional networks,” in Computer

Vision Workshops (ICCV Workshops), 2009 IEEE 12th International

Conference on, Sept 2009, pp. 878–885.

[4] (2015) Video and image processing suite megacore functions.
Altera Corporation. [Online]. Available: https://www.altera.com/products/
intellectual-property/ip/dsp/m-alt-vipsuite.html

[5] (2015) Video and image processing pack. Xilinx Inc. [On-
line]. Available: http://www.xilinx.com/products/intellectual-property/
ef-di-vid-img-ip-pack.html

[6] ARM, “Amba 4 axi and ace protocol specification,” 2013. [Online].
Available: http://www.arm.com/products/system-ip/amba-specifications.
php

[7] “Recommendation itu-r bt.656-5,” 2007. [Online]. Available: http:
//www.itu.int/rec/R-REC-BT.656/e

[8] “Recommendation itu-r bt.601-7,” 2011. [Online]. Available: http:
//www.itu.int/rec/R-REC-BT.601/e

[9] C. Harris and M. Stephens, “A combined corner and edge detector,” in
In Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

- 25 -

