
Optimization ofHardware Implementations with
High-Level Synthesis of Authenticated Encryption

Makoto Kotegawa, Keisuke Iwai, Hidema Tanaka and Takakazu Kurokawa
National Defense Academy of Japan

Yokosuka, Japan
Email: em53037@nda.ac.jp

Abstract—Competition for Authenticated Encryption: Security,
Applicability, and Robustness(CAESAR) is carried out as de-
velopment and an evaluation of new authenticated encryption.
We performed hardware implementations with VIVADO High-
Level Synthesis which is a tool of Xilinx. This tool is used with
some “directives” for optimization. This paper shows various
optimization techniques on the point of speed, area size and the
clock frequency.

Index Terms—AES, AES-OTR, Authenticated Encryption,
Hardware implementation, High-Level Synthesis, POET, SILC,
ZYNQ-7000.

I. I NTRODUCTION

In the general encrypted communication, detection of the
falsification is difficult. If user decrypt and use falsification
message unawarely, a security problem will be occurred. Use
of authenticated encryption is one of the way to solve this
problem.

Authenticated encryption has 3∼4 inputs as plain text, secret
key, nonce and associated data, moreover, 2 kind of outputs
as cipher text and tag. Tag is fixed length data, which depends
on plain text or cipher text, and its length is defined by their
specification. For example, let us consider a case of com-
munication between 2 people with authenticated encryption.
The sender makes cipher text and tag, and sends them to the
recipient. The recipient makes a tag from the received cipher
text. When cipher text is tampered by someone, sender’s tag
should be different from recipient’s tag. In this way, detection
of the manipulation will be possible by using authenticated
encryption. This technique attracts attention in not only use of
computers but also embedded systems because of their wide
use in global network.

CAESAR(Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness) is one of the main
action for authenticated encryptions. CAESAR invites public
participation of authenticated encryptions and adopt their next-
generation[1]. At the start of CAESAR, 47 algorithms were
applied. As the first selection of CAESAR, 29 algorithms
passed in the summer 2014, and they were proceeded the
second selection. Among 15 algorithms adopt AES for their
primitives as shown in Table. I. Selection meetings are held in
Direction In Authenticated Ciphers(DIAC) in every summer.
The adoption will be in December 2017 after the last selection
meeting at DIAC.

As for the implementation, both software and hardware are
assumed because authenticated encryption is necessary for

TABLE I
CANDIDATES OF CAESAR IN SECOND ROUND AND THEIR

CLASSIFICATION

Using AES NOT using AES
for the primitive for the primitive

Nonce Based

AES-AEGIS,
AES-OTR,
CLOC,
Deoxys*,
Joltik*,
OCB,
SILC ,
Tiaoxin

ACORN,
KetjeKeyak,
NORX,
PRIMATEs-GIBBON,
PRIMATEs-

HANUMAN,
SCREAM,
STRIBOB,
π-cipher,

Nonce-misuse
Resistance

AES-COPA,
AES-JAMBU,
AEZ,
Deoxys*,
ELmD,
Joltik*,
PAEQ,
POET,
SHELL

Ascon,
HS1-SIV,
ICEPOLE,
Minalpher,
MORUS,
OMD

* The algorithm which can use both NB and NR.

not only PCs but also embedded systems. We paid attention
to hardware implementations and checked a recent tendency
including two representative methods using ASIC(Application
Specific Integrated Circuit) or FPGA(Field-Programmable
Gate Array). Although ASIC and FPGA have good points and
bad points, we decided to implement authenticated encryption
on FPGA which can be updated remotely. This is because most
embedded systems are designed to connected to network(e.g
Internet)[2], [3].

In addition, for software developers, High-Level synthe-
sis(HLS) tools enable us to convert from a source code written
by high-level language(e.g. C language) to Register Transfer
Level(RTL) . It enables us to shorten hardware development
period and simplify the designing process to for the person
who does not know the hardware language enough. From this
characteristic, HLS is attracted attention at the present. Thus,
we selected hardware implementations with HLS[4], [5].

II. CAESAR

A. Candidates and the classification

At present, 29 candidates are facing the second round selec-
tion in CAESAR. Table. I shows these candidates. Candidates
of CAESAR are classified by using AES for their primitives

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 5, Number 1, pages 26–33, January 2016

- 26 -

or not by presented by F.Abed[6]. Furthermore, these can-
didates are also classified as Nonce Based or Nonce-misuse
Resistance. Here nonce is a kind of one-time random number.

Cryptographic primitives, using AES are acceptable to the
implementation side. This is because AES is used as a rep-
resentative of block cipher and many high speed implemen-
tations has been already presented[2]. In addition, high speed
processing using exclusive instructions for AES is possible.
These instructions are defined by representable processors
such as Intel Core series or ARM Cortex series. Authenticated
encryption using AES for the primitives have big advantages
for speedup, because Intel Core and ARM Cortex processors
are used in both areas of PC and embedded systems.

Next, we describe the difference of Nonce Based and
Nonce-misuse Resistance. Here, we use “block” in a meaning
“128 bits block” afterward. The followings are their charac-
teristics.

Nonce Based(NB)
Requiring nonce. The number of primitives used in
Nonce Based is less than Nonce-misuse Resistance
to encrypt a block of plain text.

Nonce-misuse Resistance(NR)
Requiring no nonce. The number of primitives used
in Nonce-misuse Resistance is more than Nonce
Based when encrypting a block of plain text.

Nonce based has an advantage of processing speed. On the
other hand, Nonce-misuse Resistance has an advantage that
does not have to share nonce in advance, so that there is no
weakness for nonce. Here we follow this classification.

B. Former studies for implementation

There is a representative former study[7] that implemented
authenticated encryptions submitted to CAESAR, and evalu-
ated their processing speed. This paper selected 12 candidates
of CAESAR using AES for their primitive, and implemented
them as software, then measured processing speed. On the
experiment environment, they assumed communication of the
Internet between PCs, and the features are summarized as
follows.

• Assumed the use of an authenticated encryption for
communication in the Internet, setting plain text length
to 128∼2048 Bytes.

• Compared and evaluated each candidates, dividing them
into Nonce Based/Nonce-misuse Resistance.

• Strove for speed-up by using AVX[8]1 and AES-NI[9]2

supported by Haswell architecture CPU3.

In consequence of the experiment, the fastest candidate was
AES-OTR in NB, and AES-COPA in NR For our experiment,
we chose authenticated encryption algorithms.

1Intel Advanced Vector eXtensions: It is extended instruction set which
Intel developed, and can operation width of up to 256bit.

2AES New Instruction: The instruction set that is supported for the purpose
high-speed coding and decoding of AES by Intel CPU

3The latest Intel CPU architecture as of 2014.

C. Choice of algorithms for optimization

For our experiment, we chose 4 authenticated encryption
algorithms out of 12 algorithms. At first, we chose AES-OTR
in Nonce Based and AES-COPA in Nonce-misuse Resistance.
Because their processing speed became the fastest in the [7].

Next, we chose POET in Nonce-misuse Resistance, which
has universal hash function in encrypt/decrypt algorithm. Uni-
versal hash function is defined as 4-round AES to the first,
and Full-round AES to the second in its specification. Using
Full-round AES for universal hash function was implemented
[7], while we implemented POET using 4-round AES for its
universal hash function from the viewpoint of speed-up.

In addition, we chose SILC which is Nonce Based authen-
ticated encryption. SILC is inferior to AES-OTR on the stand
point at processing speed because SILC needs more AES calls
in tag generating algorithm than AES-OTR. In contrast, SILC
is superior of implementation area because SILC was designed
for the purpose of small implementation area. We thought that
not only the processing speed but also the implementation area
are essential because the latter is usually important factor plays
on embedded systems. Hence we chose SILC for evaluation.
Outline of these algorithms are summarized below and Fig. 1.
The left side at Fig. 1 is encryption process and the right side
is tag generating process.

AES-OTR(Nonce Based)[10]
AES-OTR has Feistel structure and uses two vari-
ablesδ and L(= 4δ) which depend on Nonce. In
encryption process and decryption process, parallel
processing is possible in every two blocks. The
number of AES calls depends on the length of plain
text and cipher text in encryption or decryption, and
is independent in the tag generating process. AES-
OTR can generate tag with an AES call.

SILC(Nonce Based)[11]
CFB mode is applied to SILC which does not use
intermediate variable. Parallel processing is impos-
sible in encryption process, while it is possible in
decryption process. In encryption process, the num-
ber of AES calls depend on the length of plain
text which is the same as OTR. However, SILC
also depends on cipher text length in tag generating
process. Consequently, SILC is inferior to AES-OTR
in processing speed when plain text is long4.
By contrast, SILC is designed to reduce the number
of functions and variables for embedded system. As
a result, it is expected that SILC has advantage of
implementation area.

AES-COPA(Nonce-misuse Resistance)[12]
In encryption process, the number of AES calls is 2

4The number of executing AES in SILC is defined as follows by specifi-
cations.
|A|: Associated Data length[Byte],|M|: plain text length[Byte]
n: length per a block [Byte].
AES-OTR:⌈|A|/n⌉+ ⌈|M |/n⌉+ 3 (one call can be preprocessed)
SILC :⌈|A|/n⌉+ 2⌈|M |/n⌉+ 2 + ⌈|N |/n⌉

- 27 -

TABLE II
FEATURES OFFPGA AND ASIC

Device FPGA ASIC
Cost high low

Needof prototype no yes
Development period fast not fast

Field reprogramability yes no

every plain text block. The number of call AES is
2 and it is independent of plain text length. Parallel
processing is possible and variableL(= Ek(0)) is
used. In generation tag process, the number of AES
calls is 2 and it is independent of plain text length.

POET[13]
In POET encryption process, it needs an AES call
and 2 Universal Hash Function(UHF) callsEk(4-
Round or full-Round AES).POET uses two variables
X and Y which are generated by Associated Data.
About UHF, it is defined to use 4-round AES in the
first place or full-round AES in the second place. In
the former case, the number of AES call in POET
is less than AES-COPA. On the other hand, POET
uses three kinds of secret key those are generated by
AES calls. Hence, when the update of secret keys is
frequent, processing speed is expected to be down
and implementation area grows large.

III. H ARDWARE IMPLEMENTATION

A. Comparison between FPGA and ASIC

In hardware implementation, there are 2 kind methods
which use FPGA or ASIC. We show the comparison of their
features in Table.II[3].

ASIC is used widely in implementation in mass production.
In the meantime, FPGA is unsuitable for implementation the
stand point of their cost. Although FPGA has a great advantage
in today’s network society, as its remote reprogramability.

Let us show the while life cycle of products which has
computer or micro-computer. They are often updated until the
end of their life cycle and the update becomes frequent like
PCs. In addition, frequent update is also common in embedded
systems. We can find typical examples in developing of
control systems which are represented by engine control and
Advanced Driver Assistance Systems. If a developer tries
to update ASIC, it is necessary to re-product ASIC from
the beginning. By contrast, when try to update FPGA, we
only connect FPGA to network and download bit-stream files
which defines the circuit in FPGA. This difference by remote
reprogramability is not negligible.

Thus it is important that hardware has remote reprograma-
bility or not. We assume that FPGA is suitable for developed
embedded system than ASIC.

(a) OTR

(b) SILC

(c) COPA

(d) POET

M:plain text, C:cipher text, T:Tag, Ek:AES, V:Hash value

Fig. 1. Outlines of the authenticated encryptions chose for our optimization.
- 28 -

Fig. 2. Example architecture diagram of FPGA[16]

B. FPGA

1) Outline: FPGA is a type of programmable logic de-
vice, Just like the name, it is enable us to build custom
circuit by programming. Here, we explain constitution of
FPGA. The main part constituting FPGA is Configurable
Logic Block(CLB), PLL block, block RAM, multiplier and
I/O element as shown in Fig. 2). The followings are their
descriptions[15], [16].

Configurable Logic Block(CLB)
CLB is the core parts of FPGA, and consists of Look
Up Table(LUT), multiplexers, resistor and storage
element. It is possible to constitute memory by LUT
and sequential circuit by register, moreover it can be
made logic circuit by controlled LUT and register.
FPGA have switches for controlling of LUT and
register and we can configure switches by reading
the configuration data which called bit-stream file.
According to this mechanism, it is possible to design
circuit by programming.

Clock management block
Clock management block generates and supplies
clock wave of various kinds of frequency and high
precision like a standard clock in FPGA.

Block RAM and Multiplier
It is possible to use CLB as a memory and multiplier,
however it reduces the efficiency of using the CLB.
That’ why, usually using them when it is required to
implement memory and multiplier in FPGA.

I/O element
I/O element in FPGA is also programmable to ac-
commodate various interface because it is necessary
to match the electrical characteristics of the signal of

TABLE III
SPECIFICATION OFZYNQ-7000 XC7Z020[14]

CPU ARM Cortex-A9 32bit processor 886MHz

F P G A

ProgrammableLogic Cells 85K Cells
Look-Up Tables 53200

Flip-flops 106400
Block RAM 560KB
Logic Slice 13300

the in/output.
By these characteristics, hardware programming is possible.

In addition, hardware developer is able to build custom circuit
repeatedly using the same device(FPGA) without re-product
devices from the beginning like ASIC.

2) ZYNQ-7000:We used ZYNQ-7000 XC7Z020 which is
System-On-a-Chip(SOC) including Artix-7 FPGA and Dual
ARM Cortex-A9 CPU[14]. The specification of ZYNQ-7000
XC7Z020 is summarized as follows and shown in Table.III

It is possible to program flexibly each I/O, software and
hardware because ZYNQ-7000 have both of FPGA and CPU.
In part of FPGA, ZYNQ have 6650 Configurable Logic
Blocks(CLB)[16]. A CLB in ZYNQ-7000 have 2 Slices, 8
LUTs, 16 Flip-Flops as register. 2 Carry Chains, 128 bits Shift
Registers and 256 bits Distributed RAM. The followings and
Fig. 3 are description on CLB.

Logic slice
A CLB in ZYNQ-7000 has different types of Slice
called SLICEM and SLICEL. Both of them have
4 LUTs, 8 Flip-Flops, multiplexers, Carry logic as
shown in Fig. 3. In addition, SLICEM supports
two additional functions that storing data using dis-
tributed RAM and shift registers, It keeps all the
basic functions necessary to use FPGA in Slice.

Carry logic
Carry logic is dedicating fast lookahead carry. It
provides to perform fast arithmetic addition and
subtraction in slice.

Shift Registers in SLICEM
A SLICEM can be configured as a 32-bit shift
register without using the flip-flops. So, each LUT
can delay serial data from 1 to 32 clock cycles.
Furthermore, SLICEM can be configured as a 128-
bit shift register because SLICEM has 4 LUTs.

Distributed RAM in SLICEM
The LUTs in SLICEM can be implemented as a
RAM resource called a distributed RAM element.
Distributed RAM using LUTs in SLICEM can be
combined in various ways to store large amount of
data, and also be configured some kind of RAM such
as single-port or dual-port. Moreover, Distributed

- 29 -

Fig. 3. Slice in ZYNQ-7000[16]

RAM has an advantage that the memory access is
faster than using block memory, and also has a
disadvantage that the implementation area becames
lager.

In our implementation of authenticated encryption, we adopt
the number of slices as a standard to compare the implemen-
tation area.

C. High-Level Synthesis

A general way for the implementations of circuits on
FPGA requires to describe hand code in Register Transfer
Level(RTL). On the other hand, advanced algorithms which is
used in various applications are more complicated. As a result,
it needs much time to develop applications to be implemented
in hardware than before.

In contrast, High-Level Synthesis(HLS) enables us to gen-
erate RTL from C, C++ and System-C code directly without
hand code. In addition, HLS enable us to generate VHDL or
Verilog simulation and test bench, as a result simulation and
verification can be performed automatically.

To customize implementation, it is possible to set in-line
expansion and configure memory access, interface etc, for
optimization by using preprocessor called “Directive” in C-
code which is used in HLS.

IV. OPTIMIZATION METHOD OF HARDWARE

IMPLEMENTATION

We will show types of optimization method in this section.
These optimization methods are speed up, implementation
area, and target clock frequency. In addition, we use these
methods in our experiment which will be described in Section
V.

A. Speed up

Memory access is a well known bottleneck for speed up.
Thus it is necessary for memory access to be more efficient.

Fig. 4. A array partition[17]

First, we describe optimization of array access. The access
of Block RAM in the Artix-7 FPGA has up to 2 I/O ports.
Consequently, large number of access is necessary and the
latency can be increased simultaneous access to large arrays.
We can solve this problem with using the directive “ARRAY
PARTITION”. This directive enables us to partition large
arrays into multiple smaller arrays as shown in Fig. 4 to reduce
the number of RAM access which became a bottleneck.

These arrays are not implemented in RAMs but in CLB as
registers, so the implementation area is increased.

Second, we refer to block RAM and distributed RAM.
We can select either block or distributed RAM by using
directive “RESOURCE” in HLS. Block RAM is implemented
on the Artix-7 FPGA, on the other hand, distributed RAM is
implemented by using LUT in CLB. We use block RAM when
reduction of CLB utilization is needed. However, the latency
is increased when multiple access to a block RAM at the
same time occurs. Hence, we use distributed RAM to decrease
the latency because distributed RAM enables us to configure
near the each logical elements which needs memory, and to
access simultaneously. Contrary, CLB utilization is increased
by using distributed RAM.

Finally, considering unroll the for-loop and in-line expan-
sion of each function in C-code before High-level synthesis.
In VIVADO HLS, it is possible to use directive “UNROLL”
and “INLINE” for speedup. In default setting of HLS, all For-
Loop is not expanded automatically and it causes to increase
latency with divided process. This problem can be solved
with “UNROLL” before for-loop in C-code. In addition, the
latency is also increased with many functions because function
hierarchy prevents reduction of latency and function call
overhead. The directive “INLINE” removes function hierarchy
and optimize these problems.

We optimize processing speed by mainly using 3 methods
as mentioned above.

B. Implementation area

For optimizing implementation area, we consider memory
and I/O access.

- 30 -

First, we consider memory access as follows. In AES
processing, 10 times of memory access for loading S-box
is needed in the case of processing full-round. If there is
no limitation that all process of full-round AES completed
in a clock, it is possible to reduce implementation area
by implementing S-box in a block RAM. Contrary, in the
case of optimizing speed, implementing S-box in distributed
RAM or plural block RAM is needed. Owing to this rule,
implementation area should be increased.

Second, we describe optimization I/O access. Usually, ar-
rays of argument is partitioned into single array and loaded to
some CLB registers for speed-up. However, implementation
area is also increased. From this reason, we do not partition
array and fulfill reduction of implementation area in exchange
for speed-down.

We mentioned optimize implementation area by mainly
using 2 methods as above.

C. Clock frequency

Before describing optimization, we will discuss the neces-
sity of matching operation frequency of FPGA with its CPU.
In FPGA implementation, long clock period enables the delay
length of logical circuit to be long, and processing to be
more efficient. Therefore, the lower clock frequency, the better
latency is. For example, operation of FPGA in 1MHz is more
efficient than in 100MHz.

On the other hand, Clock frequency is necessary to be high
when we consider an entire hardware system. 1MHz operation
of FPGA itself becomes the bottleneck in the hardware system
no matter how its operation is fast enough. For this reason,
it is necessary for operation frequency of FPGA to be near
frequency of CPU for optimization.

Next, we consider target frequency. We pay attention to
ARM Cortex-M3 which is used in various embedded systems
such as car, factory, etc. Cortex-M3 is used in many evaluation
board, and its frequency reaches almost 100MHz. For this
reason, we decide that targeting frequency for optimize should
be 100MHz.

Finally, we describe optimization of clock frequency. Typ-
ical optimization method is to divide a critical pass which
is the longest pass in FPGA . It is possible to divide the
critical pass by reducing condition divergence. An example
of the condition divergence includes the multiplication over
GF(28) in mixcolumn in AES. We set the period limit of
critical pass as 10ns, and division of a critical pass can be
performed automatically in HLS.

V. EXPERIMENT

In our experiment, we used each optimizing method of
speed up, implementation area and target clock, moreover
we did not use each method individually. We implemented
4 algorithms with these optimizing methods, so that, we
implemented 12 patterns in our experiment.

Fig. 5. The hardware implementation flow with HLS

A. The setting

In our hardware implementation, we used ZYNQ-7000
XC7Z020 and implemented with HLS. We consider imple-
mentation in embedded system, and set the message length
as 16 Bytes. Supposing authenticated encryption for large
data encryption, it is not necessary to use hardware circuits.
There is no problem to use CPU with implemented accelerated
circuit like a AES-NI, or GPGPU5. Altogether we think it
has no benefit for hardware implementation of authenticated
encryption with large data. By contrast, we think it is necessary
that hardware implementation for embedded system which
needs power saving, low cost and processing short message.
Since we set message length as 16 Bytes.

For hardware implementation, we used Xilinx HLS for
High-Level Synthesis and Xilinx VIVADO 2015.2 for imple-
mentation target. All strategy for high-level synthesis in HLS
and implementation in VIVADO is set to default parameters.
The following and Fig. 5 are our implementation flow.

1) Design authenticated encryption in C-code.
2) Generate RTL with HLS from C-code design and check

latency and implementation area.
3) Optimize with directive.
4) Check RTL with C/RTL co-simulator.
5) Generate block design of entire ZYNQ-7000 evaluation

board including authenticated encryption RTL.

5GPGPU:General-Purpose computing on Graphics Processing Units.

- 31 -

TABLE IV
IMPLEMENTATION RESULT OFAES-OTR[NB]

Optimization
Throughput Implementation Clock

[Mbps] area[slices] [MHz]
Speed 278 2809 67.7
Area 122 2357 67.7
Clock 215 3263 100.7

6) Execute synthesis and implementation and check imple-
mentation area from implementation report.

7) Generate bit-stream file and program target device.
8) Verify generated design with ZYNQ-7000.

B. Measurements

At first, We generate 12 RTLs each of 4 algorithms and 3
optimization method with HLS. After synthesis, we confirm
synthesis reports for all RLTs. The synthesis report contains
summary of timing, latency, utilization and interface. Utiliza-
tion is changed and improved by optimizing implementation
process in VIVADO. On the other hand, theoretical value of
timing and latency are hardly improved because the period of
critical pass is almost fixed in HLS. That is why, we calculate
throughput by using the value which reported in HLS. The
following equation. 1 is calculation-formula for throughput.

Throughput[bit/sec] =

Plaintext[Byte]× 8× Targetfrequency[Hz]

Latency(clockcycles)[times]

(1)

Next, we generate block design of entire system of ZYNQ-
7000 including authenticated encryption RTL. Then, we exe-
cute synthesis and implementation using the block design in
VIVADO. After implementation, we open utilization report
and confirm utilization of slices.

Finally, we program bit-stream file to FPGA, and confirm
the operation to work normally by Xilinx Software Develop-
ment Kit(SDK). The procedure of the confirmations are the
following 3 steps.

1) Program bit-stream file to FPGA.
2) Make C-code program for executing encryption on

FPGA.
3) Execute the program on CPU6 and confirm that encrypt

operation is normal.

Furthermore, the function for using FPGA is prepared by
VIVADO and VIVADO HLS.

C. Analysis

We summarize the consequence of implementation for each
algorithm in Table. IV, V, VI and VII. For these tables,
optimization results are almost same as we expected.

However, area optimization of SILC is failed by the way
which we described in Section IV-B. We show that conse-
quence in Table. VIII. Area for speed optimization became

6CPU is Cortex-A9 in ZYNQ-7000 SOC

TABLE V
IMPLEMENTATION RESULT OFSILC[NB]

Optimization
Throughput Implementation Clock

[Mbps] area[slices] [MHz]
Speed 210 2328 82.4
Area 126 1986 82.4
Clock 147 3284 114.0

TABLE VI
IMPLEMENTATION RESULT OFAES-COPA[NR]

Optimization
Throughput Implementation Clock

[Mbps] area[slices] [MHz]
Speed 228 2791 67.7
Area 117 2507 67.7
Clock 199 3509 105.6

larger than for area optimization after HLS. Although, area
for speed up is smaller than for area after VIVADO imple-
mentation. We assume that not partitioning cipher text caused
implementation area to large because SILC reuses cipher text
for generating tag. Thereby we partitioned cipher text array in
area optimization, and succeed to optimize for area(Table. V).

VI. CONCLUSION

In this paper, we described the optimization of implemen-
tation in FPGA with HLS. Our optimization with directives
in HLS is confirmed to be effective. However, in optimization
for area of SILC, it is not effective to use our optimization
method as it is. Therefore, we should pay attention to the
use of I/O data, and select either partitioning or not for
each I/O data array. In consequence, optimization for area is
succeeded. Based on this consequence, we will try to evaluate
4 authenticated encryptions in hardware implementation.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00113.

REFERENCES

[1] CAESAR committee,CAESAR call for submissions, final,
http://competitions.cr.yp.to/caesar-call.html, 2014.

[2] Abolfazl Soltania and Saeed Sharifianb,An ultra-high throughput and
fully pipelined implementation of AES algorithm on FPGA, Microproces-
sors and Microsystems Volume 39, Amirkabir University of Technology,
Tehran, Iran, 2015.

[3] Semico ResearchHow an FPGA Approach to Complex System Design
Can Improve Profitability: Real Case Studies,
http://www.xilinx.com/publications/prodmktg/
easypath-7-fpga-asic-approach.pdf, 2012.

[4] Xuejie Zhanga and Kam W NgA review of high-level synthesis for
dynamically reconfigurable FPGAs, Microprocessors and Microsystems
Volume 24, Issue 4, The Chinese University of Hong Kong, China, 2000.

[5] Tom Feist,White Paper: Vivado Design Suite, ver1.1, XILINX,
http://www.xilinx.com/support/documentation/whitepapers/
wp416-Vivado-Design-Suite.pdf, 2012.

[6] Farzaneh Abed, Christian Forler and Stefan Lucks,Classification of the
CAESAR Candidates, Cryptology ePrint Archive:Report 2014/792.
http://eprint.iacr.org/2014/792, 2014.

- 32 -

TABLE VII
IMPLEMENTATION RESULT OFPOET[NR]

Optimization
Throughput Implementation Clock

[Mbps] area[slices] [MHz]
Speed 251 3500 74.6
Area 124 3223 72.2
Clock 190 4533 100.7

TABLE VIII
AREA AFTER HLS VS AFTER VIVADO IMPLEMENTATION OF SILC

Optimizationfor LUT Flipflop

After HLS
Speed 22408 4375
Area 19499 2705

After VIVADO Speed 7949 7949
implementation Area 8212 8212

[7] Andrey Bogdanov, Martin M. Lauridse, and Elmar Tischhauser,AES-
Based Authenticated Encryption Modes in Parallel High-Performance
Software, Cryptology ePrint Archive:Report 2014/186,
http://eprint.iacr.org/2014/186, 2014.

[8] Intel 64 and IA-32 Architectures Software Developer’s Manual,
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.
pdf, 2015.

[9] Shay Gueron,White Paper: Intel繧托 Advanced Encryption Standard
(AES) New Instructions Set, Intel,
https://software.intel.com/sites/default/files/article/165683/
aes-wp-2012-09-22-v01.pdf, 2012.

[10] Kazuhiko Minematsu.:AES-OTR v2,
http://competitions.cr.yp.to/round2/aesotrv2.pdf (2015).

[11] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio
Morioka, and Eita Kobayashi.:SILC v2,http://competitions.cr.yp.to/
round2/silcv2.pdf (2015).

[12] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart
Mennink, Elmar Tischhauser, and Kan Yasuda.:AES-COPA v.2,
http://competitions.cr.yp.to/round2/aescopav2.pdf (2015).

[13] Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List,
Stefan Lucks, David McGrew, and Jakob Wenzel.:The POET Family of
On-Line Authenticated Encryption Schemes v2.0,
http://competitions.cr.yp.to/round2/poetv20.pdf (2015).

[14] zynq7000 product table, XILINX,
http://www.xilinx.com/support/documentation/selection-guides/
zynq7000-product-table.pdf, 2015

[15] XILINX, Technical Reference Manual: Zynq-7000 All Programmable
Soc, ver 1.10,
http://www.xilinx.com/support/documentation/userguides/
ug585-Zynq-7000-TRM.pdf, 2015.

[16] User Guide: 7 Series FPGAs Configurable Logic Block, XILINX,
http://www.xilinx.com/support/documentation/userguides/ug474
7SeriesCLB.pdf, 2014.

[17] XILINX, Vivado Design Suite User Guide: High-Level Synthesis, ver
2015.2,
http://www.xilinx.com/support/documentation/swmanuals/xilinx2015
2/ug902-vivado-high-level-synthesis.pdf, 2015.

- 33 -

