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Abstract—Non-volatile memories are next generation storage
devices which maintain data on memory cell regardless of system
power. However, non-volatile memories are hard to guarantee
transaction’s ACID properties when abnormal system crash oc-
curs. In this paper, we implement fail-safe software transactional
memory(F-STM). F-STM guarantee durability by locating F-
STM’s data structure to non-volatile memory. Using F-STM,
computer structure based on non-volatile memory can provide
data integrity.

I. INTRODUCTION

Non-volatile memory can read/write data in the mem-
ory cell without separate electrical approach. In addition,
it can maintain data in non-volatile memory cell without
maintenance of electricity like auxiliary storage device (e.g,
SSD,HDD,Flash Memory). Because of Non-volatile memory
is bytes-addressable, its rapidly rising to a next-generation
device which can endure weaknesses of existing volatile
memory and flash memory.

At present, many systems are based on volatile memories.
Many studies are making an effort to change computer struc-
ture based on volatile memory to the structure which can
utilize non-volatile memory[4],[18],[9]. For the representative
studies in the field of non-volatile memory, there are devel-
opment of middleware platform helping writing non-volatile
memory area or design of data structures for only non-volatile
memory. For the representative middleware platform managing
the field of non-volatile memory, there are NV-HEAP [4],
Mnemosyne [18], HEAPO [9], etc.

Volatile memory extinguishes data completely if the process
finishes abnormally because of the system error. On the
contrary, data is remaining in non-volatile memory in spite
of the abnormal error, so it can be reused after the recovery.
Therefore, systems utilizing non-volatile memory need the
method guaranteeing ACID of transaction unit for the work
reading/writing with non-volatile memory. For example, lets
consider the case ACID of transaction unit is not guaranteed
for the errors made during the process to insert the node
of list data structure with non-volatile memory. If there is
any abnormal error at the moment when node for insertion
is allocated, the node will be garbage after the recovery. It
requires expensive garbage collection[3]. If there is any error
during the update of the pointer of node or head node for
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insertion, address of nodes point can be incorrect.

Computer structure based on volatile memory causes a
problem violating ACID of the data between volatile memory
and auxiliary memory device. Existing computer structure
(based on DRAM) guarantees ACID between two classes
with methods such as journaling [15], shadow paging [20],
versioning [17] and copy-on-writte[8] in the class of file
system. In computer structure utilizing non-volatile memory,
there is a problem violating ACID of data between volatile
CPU cache and non-volatile memory. Representative studies
redesigned by hardware so that CPU cache can have non-
volatile characteristics[11] or solved by separate storage like
journaling.

In this paper, we guarantee transaction’s ACID properies by
using fail-safe software transactional memory(F-STM). This
paper is organized by 3 chapters. The first part is related to
background knowledge and introduces platform and library,
this paper used for guaranteeing ACID of data. The second
part introduces problems while non-volatile memory uses
STM. Finally show the performance about Key-Value insert
operation on F-STM.

II. BACKGROUND
A. Non-Volatile Memory

All of computer systems use relatively slow storage (e.g,
HDD,SSD) as an auxiliary storage device. Slow storage uses
volatile memory as a buffer and relieves the bottleneck of
storage reading/writing(IO) for an alternative of high speed.
In comparison with IT technology which is rapidly devel-
oped, minute process technology of the memory is staying
at 30nm. To endure the technical limits, existing computer
structure is rapidly changed. For a representative study, there
is non-volatile memory. Many studies are finding methods
to replace computer structure of memory storage with non-
volatile memory. New memory can maintain and manage data
in the memory without separate electrical approach and is
rapidly rising to the next-generation device which can keep
data all the time without maintenance of electricity like an
auxiliary storage device.

For the representative non-volatile memories, there are
STT-MRAM(Spin Transfer Torque-Magnetoresistive RAM),
PCRAM(Phase Change RAM), ReRAM(Resistive RAM), etc.
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Through the Table I, characteristics of each non-volatile mem-
ory were compared. Non-volatile memory has respectively
physical characteristics and fields using it should be different
minutely. For example, STT-MRAM has speed similar to
DRAM with magnetic characteristics and is a representative
non-volatile memory replacing DRAM, solving power con-
sumption, a troublesome problem of DRAM. On the other
hand, PCRAM will store status of data with material changes
and be used to replace buffer cache of volatile memory, used
in large-quantity server. In addition, FRAM is thoroughly low-
density and highly expensive, but reading/writing(IO) speed is
high.

| Name || speed | Byte addressable | nonvolatile |
PCRAM 75ns Yes Yes
FRAM 100ns Yes Yes
STT-MRAM 10ns Yes Yes
ReRAM 75ns Yes Yes
DRAM 10ns Yes No

TABLE I
CHARACTERISTIC OF NONVOLATILE MEMORY [10],[13],[19].

B. HEAPO

HEAPO(Heap-Based Persistent Object Store) [9] is a mid-
dleware platform managing non-volatile memory. Middleware
platform managing non-volatile memory not only provides
convenient interface so that programmers can freely use the
field of non-volatile memory after the allocation of the field
of non-volatile memory but also solves several issues (e,g.
allocation/deallocation of non-volatile physical page, guaran-
teeing of ACID of transaction unit) occurred for managing
non-volatile memory.

Virtual Memory

heapo_vm_area vm_area_struct

mm_struct task_struct

segment

heapo superblock segment

segment

segment

HEAPO Process Address Space

Fig. 1. Process Address Space in HEAPO

Fig. 1 shows virtual address space of the process allocated
by non-volatile memory through the HEAPO. If HEAPO
allocates non-volatile memory, its mapped to the space of
virtual address in the field of heap. The address for the
mapping of non-volatile physical page is provided by letting
HEAPO use a part of heap field, a space of process address
used for dynamic allocation(malloc (),free ()). HEAPO

provides pos_malloc ()/pos_~free () functions so as to
allocate/deallocate non-volatile physical page by chunk units
as if invoking malloc ()/free () for allocation/deallocation
of dynamic memory in glibc. Programmers who make ap-
plication programs with non-volatile memory can receive
dynamic allocation of non-volatile physical memory freely
with interface provided by HEAPO.

C. Software Transactional Memory

Software Transactional Memory is the mechanism solv-
ing concurrency control by only software approach with-
out any particular blocking [16]. Unlike lock mechanism,
STM(referred to software transactional memory) can do works
by simultaneous approach of several threads(non-blocking).
TinySTM is Software Transaction Memory Library based on
word[1]. TinySTM has separate log storage of each thread
for concurrency control. Log storage of each thread keeps
recovery information for memory store/load occurred in the
transaction. TinySTM cognizes the problem occurred while
transaction approaches address of other transaction during the
writing work of particular memory address or phenomenon
changing particular memory address while other transaction
does writing work of the address after writing work of
particular memory address, so aborts one transaction be-
tween two transactions and maintains the status of transaction
consistently all the time. Aborted transaction rollbacks with
memory store/load rollback information stored in log storage
by threads.

struct R{
void *value;
Pl int valid;
atomic set i
{
R.value = 0xCOF;
R.valid = 1;

(TinySTM example)
TM_INIT THREAD
TM_START
TM_STORE (&R.value, O0xCOF) ;

TM_STORE (§R.valid, 1);
TM_COMMIT
TM_EXIT_THREAD

Fig. 2. TinySTM example source code

TinySTM carries out concurrency control for memory
store/load of transaction unit like Fig. 2. If the thread
is made, log storage is made by TM_INIT THREAD
macro-threads. If the thread finishes, log storage is elim-
inated by TM_EXIT_THREAD macro. The start and end
of the transaction are surrounded by TM_START and
TM_COMMIT. TM_START initiates rollback information for
memory store/load managed by log storage of each thread.
TM_COMMIT tests the conflict by other transaction and
reflects contents of memory store/load in the log storage before
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the transaction is committed. Log storage of each thread is
organized by two storages. Memory operation is organized
by reading and writing, so log storage of each thread is
managed by read_set managing rollback information for load
and write_set managing rollback information for store. In
transaction of TinySTM, memory load/store uses TM_STORE
and TM_LOAD. TM_STORE stores rollback information in
write_set of log storage and TM_LOAD stores rollback in-
formation in read_set of log storage. Rollback information
for memory load/store of transaction by threads is stored for
the rollback of two transactions related to the conflict after
the operation of contention manager in TinySTM. Contention
Manager reflects one transaction and aborts another transac-

tion.
User
Progra

” STM Library ”

DRAM

TinySTM Metadata
[ thread 1 ]—| stm_tx_t 1

read_set |—>| read entry | ...
- addr | value

write_set

TinySTM structure on DRAM

[ thread 2 ]—| stm_tx_t 2

Fig. 3.

From now on, this chapter will examine data structure
managing for the concurrency control of TinySTM in volatile
memory and examine operative process of TM_STORE, mem-
ory writing macro provided by TinySTM, in detail. Fig. 3
indicates data structure of TinySTM in multi-thread envi-
ronment. TinySTM has descriptor(stm_tx_t) in each thread.
During the same transaction of two threads, there are status of
transaction working for cognition of the conflict and abort of
one transaction, address information returning to TM_START
during the rollback of the transaction and addresses for
write_set,read_set.

Memory store/load provided by TinySTM is stored in
read_set and write_set, log storages of each thread, and there
is one by each thread. Log storage has start address of the
list related by number of rollback information. As a result
of TM_STORE, rollback information related to write_set is
write_entry. As a result of TM_LOAD, rollback information
related to read_set is read_entry. write_entry and read_entry
are organized by pair of value/address for reading or writing
due to the TM_STORE,TM_LOAD. The structure is used for
the rollback returning the transaction related to the conflict
to the previous status during the conflict. TinySTM is data
structure for only volatile memory and all of current data
structures are allocated and managed in DRAM.

III. PROBLEM

Consistency and Durability must be guaranteed so that Soft-
ware Transactional Memory can guarantee ACD of transaction

in non-volatile memory. In case of transaction commit, Consis-
tency has a property to guarantee coincidence of the contents
between volatile media and non-volatile media. Durability is a
property to carry out the recovery process of data worked and
guarantee perfectness of data during the intermediate commit
of transaction by system crash.

STM allocates and operates data structures in volatile mem-
ory and all of transactions worked during the Power Failure are
lapsed. Therefore, its not important that TinySTM guarantees
the consistency between volatile CPU cache and volatile
DRAM for itself. However, because of the introduction of non-
volatile memory, its important to guarantee the consistency
between CPU cache and NVRAM because data written in
volatile CPU cacheline must guarantee the flush of non-volatile
memory in order of the writing all the time. But, TinySTM, the
library for only volatile memory, doesnt have the guaranteeing
mechanism.

In addition, STM needs mechanism recovering system crash
occurred during the transaction. Transaction is a set of arith-
metic operations which should be occurred logically all at
once. Although written in non-volatile memory, perfectness
of data must be maintained by returning to undo of failed
transaction or reflecting redo of transaction after the recovery
of system crash. But, TinySTM, the library for only volatile
memory, doesnt have the guaranteeing mechanism.

DRAM
[ thread 1 ]

[ thread 2 ]

NVRAM

| stm_tx_t 1 \ | stm_tx_t 2 \j

[ write entry | [ read entry |
[ addr [ value | [ addr [ value |

Fig. 4. TinySTM Structure in NVRAM

IV. DESIGN AND IMPLEMENTATION
A. Persistent Software Transactional Memory

The structure of computer based on non-volatile memory
stores working status to non-volatile memory when power
failure or system crash on program operation occurs. It is
called as permanence of non-volatile memory. Therefore, mid-
dleware platforms managing non-volatile memory can reuse
data remaining in non-volatile memory after system recovery.
Data for reuse must have consistency after the recovery
because it cannot be expected by user as a result of error.
Data structure of TinySTM is currently on volatile memory.
If TinySTM causes power failure or system crash during
the concurrency control, all of data structures in progress of
works are deleted. The library of TinySTM used by HEAPO
didnt design mechanism guaranteeing Failure-Atomicity. This
chapter suggests the method to let log storage of each thread,
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managed by TinySTM, in non-volatile memory. TinySTM
located in non-volatile memory can block deletion of data
in progress of works due to the abnormal error and log
storage of each thread is located in non-volatile memory, so
Consistency and Durability for non-volatile memory can be
guaranteed by stored log storage. Fig. 4 shows location of
data structure TinySTM allocates in volatile memory to non-
volatile memory. In consideration of Figure, descriptor and
log storage of each thread are allocated in non-volatile mem-
ory. write_set is located in non-volatile memory, so recovery
information stored by TM_STORE will be located in non-
volatile memory. Suggested design stores recovery information
in non-volatile memory after the error unlike TinySTM for
only volatile memory deleting recovery information because
of the abnormal error, so its possible to recover consistently.

B. Failure-Recovery Mechanism

This chapter suggests recovery method for system crack
with TinySTM data structure located in non-volatile memory.
TM_STORE is memory writing operation of TinySTM. Pa-
rameter of TM_STORE is organized by memory address and
value and its function is to write the value in the memory
as mentioned before. When TM_STORE is called, the value
originally stored is logging in the memory address before
TM_STORE writes the value in memory address.

Data Structure
L.{ Root Node A J
Node B l

Fig. 5. Sequence number to manage recovery: (1)Alloc Node and Copy
K-V,(2)Write Pointer,(3)Update Pointer

TinySTM Rollback-Journal
@ @ ®
&nodeA], , |&A->nextl, | &head
free @ null null
&nodeB |, |&B->next &head
free e} null nodeA

@I sequence number

Therefore, if there is system crack, Memory writing storage
(write_set) of TinySTM maintains recovery information in
non-volatile memory as it is. Recovery information of write-
through is values (write_entry) stored originally in memory
address. This chapter suggests mechanism of rollback of
previous undo managed in non-volatile memory. Recovery
method for system crack is memory writing work reflected the
most recently from the time of conflict firstly until the writing
work reflected the most lately, in order. For it, recovery order
of write_entries is necessary. In other words, TinySTM must
be able to calculate the ordering number of write_entry while
invoking TM_STORE. Fig. 5 is in progress of list insertion
arithmetic operation of HEAPO in multi-thread environment.
To control concurrency in multi-thread environment, TinySTM
will cognize conflicts by storage of each thread will be
located in non-volatile memory. For the recovery, write_entry
is numbered in order of inserting to write_set.

Lets assume that system crack is occurred in the Figure
situation. Users will recover the system and reuse the data.
To use consistent data, ordering number of write_set stored

in non-volatile memory is searched. Memory writing work
reflected the most recently from the time of conflict is No. 6
and the work reflected the most lately is No.l. Data of hash
table can maintain the consistency through the rollback from
No.6 to No.1.

V. EVALUATION

This section carries out performance evaluation of F-STM.
This chapter measures KV data structure record insertion
performance of HEAPO through the TUNA, a board of non-
volatile memory.

A. Tuna Board

For the experiment of this paper, TUNA board, a board
for only non-volatile memory, was used [2]. TUNA board
was developed to use non-volatile memory and uses ARM
based platform. TUNA board is designed to supply power
separated from DRAM Chip and adopted hybrid based com-
puter structure using both volatile memory and non-volatile
memory, so its optimal to experiment hardware performance
of NVRAM. Also, HEAPO, a middleware platform for non-
volatile memory is installed and total 15 stages of write latency
can be provided, so its possible to measure performance in
various ways.

B. Experiment

HEAPO implemented three types of KV store in non-
volatile memory for application programmer. Therefore, We
evaluate insert operation performance for each types of KV
store(list,hash,btree) about F-STM on Fig. 6.
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Fig. 6. Performance for each kv store

TinySTM performance is increased linearly as the number
of threads is increased in multi-core environment because
TinySTM permits free entrance of several threads to critical
section for guaranteeing concurrency control. Fig. 6 confirms
performance changes by increase of the number of TinySTM
threads. The number of threads transaction enters Critical
Section is increased and performance increase is confirmed.
There are 2 cores of TUNA board for the experiment and the
experiment is conducted by increasing the number of threads
to 2.

-62 -



Compared to HEAPO which do not guarantee fail-safe, F-
STM lead to degradation of performance. Howewver, HEAPO
which have special recovery mechanism for system crash must
be needed. Because guaranting transaction’s ACID properies
is important issue of non-volatile characteristic.

VI. CONCLUSION

This paper locates storage managing TinySTM by threads
in non-volatile memory and implements recovery mechanism.
Therefore, suggested TinySTM guarantee Consistency and
Durability. At present, TinySTM transaction must be directly
made by macro provided by TinySTM. Memory reading or
writing is same. In Future works, users can be convenient
by letting compilers manage memory reading and writing of
transaction automatically.
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