
Find top-k representative skyline points by using grid data structure

Cheng Chang, Md. Anisuzzaman Siddique, Asif Zaman, and Yasuhiko Morimoto
Graduate School of Engineering, Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: {m145661@, siddique@, d140094@, morimoto@mis.}hiroshima-u.ac.jp

Abstract—To analyze a database more intensively, we need
some representative records, such as, the cheapest one, the most
popular one, the most convenient one and so on. Skyline query
and its variant are popular functions to find such representative
objects from a numerical database. However, a skyline query
often retrieves too many points to analyze intensively especially
for high-dimensional dataset. Therefore, we put our focus on
selecting top-k points that represents a database. We select the
k points so that many points are dominated by the k points.
This paper proposes an efficient grid-based algorithm to find
such top-k representative skyline points. We conducted a set of
experiments to show the effectiveness and the scalability of the
propose algorithm.

Keywords—Skyline; Representative points, Grid-based;
Database;

I. INTRODUCTION

Representative records, such as, the cheapest one, the most
popular one, the most convenient one and so on are one of
important clues to understand a database. Skyline query and its
variant are popular functions to find such representative objects
from a numerical database. Given a set of d-dimensional points
D, the skyline consists of the points, called “skyline points”,
which are not dominated by another point. Let p,q be two
vectors, and let p[i] be the i − th dimension’s value of p. A
point p = (p[1], p[2], · · · , p[d]) dominates another point q =
(q[1], q[2], · · · , q[d]) if p[i] ≤ q[i] for (1 ≤ i ≤ d) and there is
at least one dimension j such that p[j] < q[j].

Figure 2 shows an example of skyline that is calculated
from a database in Figure 1. The table in Figure 1 is a list
of phones, each of them contains two numerical attributes:
power and price, for online booking. A user chooses a phone
from the list according to her/his preference. In this situation,
her/his choice usually comes from the phones in skyline. In
this example, the skyline of the phones is {1, 2, 3, 4, 5, 6, 7}
(see Fig. 2).

As illustrated in the example, without any preferences the
skyline query is capable to find a common subset of non-
dominated points for all linear scoring functions. This intuitive
nature of the query formulation has been a key strength of
skyline queries. On the down side, we cannot control the
number of retrieved points. Skyline queries may retrieve too
many objects especially in high dimensional databaes. It is
non-trivial to identify truly interesting points from large skyline
result set. In the above example, it may be hard for users
to make a good, quick selection by referencing all points
from skyline that consists of many phones. Therefore, we put
our focus on the top-k representative skyline points selection
problem. We select the k points so that many points are
dominated by the k points.

Fig. 1. A list of phone

In this paper, we used greedy algorithm to solve this
problem. For example, the top-1 representative skyline of
Figure 2 is {6}, because the number of dominated points by
{6} is the largest. After removing the dominated points by
{6}, {4} dominates the largest number of points. Therefore,
the top-2 representative skyline points are {6,4}. We repeat
the greedy process until we select k points.

Assume that a user want to find her/his best phone to buy
from the database in Figure 1. Since it contains 32 different
phones, the selection takes time. If we compute the skyline
query, the number of candidates is reduced to 7. However, it
is still relatively large. Moreover, as we mentioned, we cannot

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140
Volume 5, Number 1, pages 64–67, January 2016

- 64 -

Fig. 2. A skyline example

control the size of candidates.

Our proposed approach outputs the top-k representative
skyline. If k = 5, we can output {6,4,7,5,3} as the top-5
representative skyline. The selection problem from the top-5
representative skyline is much more easier and faster.

In summary, the contributions of this paper include follow-
ing aspects:

� We studied the top-k representative skyline query.

� We developed a grid based algorithm to select the top-
k representative skyline.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the notions and
properties of key personnel computation using skyline query.
We provide detailed examples and analysis of our algorithm in
Section IV.Then, we show the experimental evaluation of our
algorithm in Section V. After that, we show a short summary
in Section VI. Finally, Section VII concludes the paper

II. RELATED WORK

Skyline Query Processing

Borzsonyi et al. first introduced the skyline operator
over large databases and proposed three algorithms: Block-
Nested-Loops(BNL), Divide-and-Conquer (D&C), and
B-tree-based schemes [1]. Kossmann et al. followed to im-
proved the D&C algorithm, and proposed nearest neighbor
(NN) algorithm for efficiently pruning out dominated objects
by partitioning the data space iteratively based on the nearest
objects in the space [5].

Similarly, Chomicki et al. improved BNL by presorting,
they proposed Sort-Filter-Skyline(SFS) as a variant of
BNL [3]. Godfrey et al. proposed linear elimination sort
for skyline (LESS) algorithm for efficient computation of
skyline queries [4]. Among index-based methods, Tan et al.
proposed two progressive skyline computing methods Bitmap

and Index [8]. The current most efficient method is Branch-
and-Bound Skyline(BBS), proposed by Papadias et al.,
which is a progressive algorithm based on the best-first nearest
neighbor (BF-NN) algorithm [7]. Instead of searching for
nearest neighbor repeatedly, it directly prunes using the R*-
tree structure. Meanwhile, there have been efforts for designing
effective skyline structures for high-dimensional data. Yuan et
al. proposed skycube structure, which amortizes the cost of
computing skylines over all possible subspaces [11]. Xia et al.
improved skycube structure and proposed CSC structure as a
more concise alternative to remove duplicated skylines in the
skycube by storing each skyline object only to its minimum
subspace [10].

The first piece of work on representative skylines is pa-
per [6]. The work of [6], however, adopts a definition of
representativeness that sometimes returns skyline points that
are barely representative. It is a poor choice because it has a
high possibility that all the points belongs to the same set and
does not indicate the trade-offs provided by other sets. Another
work of representative skylines is paper [9], this paper try to
use Distance-based method to find top-k. But obviously, they
dont consider the dominate power between different skyline
points. They just choose the points which can cover the largest
distance, even if these points dominate power is low. To the
best of our knowledge, the latest work about skyline operator
is [2]. They present that regret minimizing sets are a recent
approach to representing a dataset by a small subset R of size
r of representative data points. we introduce the relaxation to
k-regret minimizing sets, whereby a top-1 query on R returns a
result imperceptibly close to the top-k on dataset. We introduce
and use set-cover problem based on this paper.

III. PRELIMINARIES

In this section, we present some definitions and basic
properties of our algorithm.

A. Set Cover Problem

Definition 1 (Set Cover). Given a set of n elements
E = {e1, e2, · · · , en} and a set of m subsets of E, S =
{S1, S2, · · · , Sm}, find the least number collection C of sets
from S such that C contains all elements in E. That is,
∪Si∈CSi = E.

For example, consider a universe ∪ contains seven el-
ements, that is ∪ = {p1, · · · , p7} and the set of sets
S = {{p1, p2, p3, p4}, {p2, p4}, {p3, p4, p5}, {p5, p6, p7}}.
Clearly the union of S is ∪ and we can cover all of
the elements with the following, smaller number of sets:
{{p1, p2, p3, p4}, {p5, p6, p7}}.

B. Dominance and Skyline

Definition 2 (Domination). For two points p, p′inD, point
p is said to dominate the point p′, denoted by p ≺ p′, if p.as ≤
p′.as for all attributes (s = 1, · · · , d) and p.ax < p′.ax for at
least one attribute (1 ≤ x ≤ d). We call such p as dominant
point and such p′ as dominated point between the two points.
If p dominates p′, then p is preferable than p′.

In Figure 2 point 8 dominates point 11 (8 ≺ 11). This is
because point 8 has smaller value in both attributes price and
power than point 11.

- 65 -

Definition 3 (Domination Set). Domination set for a point
p is a set of all points that are dominated by p. The domination
set of p, denoted by dom(p). For example from Figure 2
dom(1) = {10, 17, 21, 22, 32}.

Definition 4 (k-most Valuable Set Cover). Given a
positive integer k and a dataset D, the k-most valuable set
cover returns k non dominant points. And these k points can
dominate largest number of different points. k-most valuable
set cover of a dataset D is denoted as Skmv(D). If we
set k = 2, then 2-most valuable set cover for Figure 2 is
S2mv(D) = {4, 6}.

Definition 5 (Skyline). A point p ∈ D is in skyline of D
(i.e., a skyline point in D) if p is not dominated by any other
point in D. The skyline of D, denoted by Sky(D), is the set
of skyline points in D.

For the dataset in Figure 2, points 1, 2, 3, 4, 5, 6, and 7
can dominate all other points and they are not dominated by
another point. Thus, skyline query for this dataset will retrieve
{1, 2, 3, 4, 5, 6, 7}.

C. Grid Construction

Our propose calculation is based on a grid computation
technique. At first we randomly choose q points from dataset
D. Next based on the coordinate of these q points we create
the grid partition for D. Then we can get the grid partition.(see
Figure 3)

Each grid cell is denoted as C(x, y), where x represents
grid coordinate x value and y represents grid coordinate y
value. To find valuable grid we have to search those grid that
contains skyline points. This is because, skyline retrieves all
non dominant points. Thus cell with skyline points has better
possibility to dominate many points than other cells.

Definition 6 (Skyline Grid Cell). Grid cell with skyline
points are called as skyline grid cell.

For example in Figure 3 Grid C(2, 3) is an example of
skyline grid cell.

A cell C(x, y) has a maximum and minimum dominate
power. We define two different functions to compute maximum
and minimum dominate power. For a grid cell denoted as
C(x′, y′), where x′ represents grid coordinate x value and y′

represents grid coordinate y value. They are as follows:

Definition 7 (Max Dominate Power Function). The
MaxC(x, y) functions computes the maximum number of
point dominated by a point p ∈ C(x, y). Mathematically define
as-

MaxC(x, y) =
∑
|C(x′, y′)| − 1, (x′, y′)|x′ ≥ x, y′ ≥ y

For a grid cell C(x, y) the maximum number of points
are dominated by the min-corner (lower left corner). But the
number should minus one, because we consider each point in
this cell, so for each point in grid C(x, y) can not dominate
itself. It means that possible for each point can dominate all
the other points in this cell, just except itself. For example in
Figure 3, the grid cell C(5,1) dominates at most 11 points, so
it’s max dominate power is 11.

Fig. 3. The data partition.

Definition 8 (Min Dominate Power Function). The
MinC(x, y) functions computes the minimum number of
point dominated by a point p ∈ C(x, y). Mathematically define
as-

MinC(x, y) =
∑
|C(x′, y′)|, (x′, y′)|x′ ≥ x, y′ ≥ y

For example in Figure 3, the grid cell C(5,1) dominates at
least 6 points, so it’s min dominate power is 6.

For a grid cell C(x, y) the minimum number of points are
dominated by the max-corner (upper right corner). For two grid
cells C(x, y) and C(x′, y′), if max | C(x, y) |<| C(x′, y′) |,
then we can remove C(x′, y′).

From Figure 3 the max dominate power of C(5,1) is 11
and the min dominate power of C(5,1) is 6. The max dominate
power of C(2,3) is 19 and the min dominate power of C(2,3)
is 11. We can see that the max-corner of grid cell C(2, 3) can
dominates the min-corner of grid cell C(5, 1). Thus we can
remove grid cell C(5, 1) from non-dominated grid, although it
succeed to dominate 10 points.

IV. ALGORITHM

In this part, we proposed an algorithm, it is used for
calculate the top-k representative skyline. We use the same
example to show. After we get the non-dominated grid, we
need to calculate the max dominate power and the min domi-
nate power for every non-dominated grid.(based on definition 7
and definition 8) Then we start the first prunning.(see Figure 4)

After first prunning, we use the max dominate power sort.
Then we calculate the skyline point for the first grid. In this
example, it means the skyline point of C(4,1), they are 6 and
7. Then we calculate the dominate power for these skyline
points. Use these dominate power for second prunning. We
repeat these steps until we find the top-k representative points.

V. EXPERIMENTAL EVALUATION

This section reports our experimental results to validate
the effectiveness and efficiency of proposed method.We set up

- 66 -

Fig. 4. Result of prunning

Fig. 5. Algorithm for top-k represnetative skyline

an commodity PC in high speed Gigabit network, which has
an Intel Core 2 Duo E8500 3.16GHz CPU, 8GB memory.To
conduct experiments we used synthetic datasets and each
experiment is repeated five times and the average result is
considered for performance evaluation.

We study the effect of calculation on proposed technique.
We vary the data cardinality from 100k to 400k. Also we vary
the number of k from 2 to 5. The run-time result for this
experiment is shown in Figure 8.

Fig. 6. Time Efficiency in 2-D space

VI. SUMMARY

As a short summary, our performance evaluation indicates
that GRS is quite efficient in 2-d space. When the data
size becomes larger, the grid-based structure will be more
efficiently.

VII. CONCLUSION

The skyline of a dataset may have a large number of points.
Returning all of them may make it difficult for a user. A better
approach is to present only a few representative points that
represent the entire skyline.

In this paper, we investigate the problem of computing
the top-k representative skyline points without calculating the
skyline of the database. After introducing the novel skyline
operator: top-k representative skyline points, we present an
efficient dynamic programming based algorithm for a 2d-space
in which an exact solution can be achieved.

ACKNOWLEDGMENT

This work is supported by KAKENHI (23500180,
25.03040) Japan. A. Zaman is supported by Japanese Gov-
ernment MEXT Scholarship.

REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In
Proceedings of ICDE, pages 421–430, 2001.

[2] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing
k-regret minimizing sets. Proc. VLDB Endow., pages 389–400, 2014.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting.
In Proceedings of ICDE, pages 717–719, 2003.

[4] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
large datasets. In Proceedings of VLDB, pages 229–240, 2005.

[5] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an
online algorithm for skyline queries. In Proceedings of VLDB, pages
275–286, 2002.

[6] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: the k most
representative skyline operator. In Proceedings of ICDE, pages 86–95,
2007.

[7] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM Transactions on Database
Systems, pages 41–82, 2005.

[8] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In Proceedings of VLDB, pages 301–310, 2001.

[9] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative
skyline. In Proceedings of ICDE, pages 892–903, 2009.

[10] T. Xia and D. Zhang. Refreshing the sky: the compressing skycube
with efficient support for frequent updates. In Proceedings of SIGMOD,
pages 491–502, 2006.

[11] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient
computation of the skyline cube. In Proceedings of VLDB, pages 241–
252, 2005.

- 67 -

