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Abstract—Collaborative Filtering (CF) is one of successful
methods for generating recommendations. However, conventional
CF method is not good at capturing sequential behaviors of users.
Though it is obvious that users’ preference must be affected
by experiences of the users in the past. For example, if a user
watched a movie and then liked the movie significantly, the user
will be interested in movies whose actor/actress/director is the
same. In other words, each user’s preference towards items is
evolving with time dynamically and these temporal dynamics
should be noticed. In this paper, we treat users’ rating histories
as sequential purchasing behavior and utilize such sequential
behavior for recommendation task. We use Deep Recurrent
Neural Networks (DRNN) to model those purchasing sequences.
Experiments on the MovieLens dataset show improvements over
previous reported results and demonstrate that our method can
utilize users’ purchasing behavior data for collaborative filtering
while capturing the evolving behaviors and tastes of users better
by modeling temporal dynamics implicitly.

I. INTRODUCTION

Since the number of items available in E-Commerce is
extremely large, users are always inundated with choices. Rec-
ommendation system alleviates this problem by recommending
users with items they may be interested. Among recommenda-
tion techniques, Collaborative Filtering (CF) [25] is a widely
used technique. In order to identify new user-item interactions,
CF analyze relationships between users and interdependencies
among items. Since a sparse user-item rating matrix is usually
used, CF can be regarded as a sparse matrix completion
task. In other word, the task is predicting ratings on the
missing values’ positions. Left part of Figure 1 shows a rating
matrix used in CF. Notice that /; represents an item and U
represents a user. Rating matrix is a kind of explicit feedback
which represents users’ preferences towards items explicitly.
However, in many applications such explicit feedbacks do not
exist. For example, in the situation of E-Commerce website,
a large fraction of users are unwilling to give their ratings to
items they purchased. In such case, implicit feedback such as
purchasing history, click stream, and browsing activity can be
utilized for recommendation generation. Right part of Figure
1 shows an example of purchasing matrix. Notice that each 1
represents a purchasing behavior.
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Fig. 1. Rating matrix and Purchasing matrix.
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Fig. 2. Purchasing sequences generated from purchasing matrix.

Users’ preferences for items are evolving over time, we
call this temporal dynamics. For example, users’ tastes are
evolving dynamically as new items emerge. As stated in [13],
the analysis of such time drifting data needs to find the right
balance between discounting temporary effects that have very
low impact on future behavior, while capturing longer-term
trends that reflect the inherent nature of the data. They modeled
temporal dynamics of users’ preferences as time drifting
parameters and combined them with latent factor model [14]
in CF. Although it is useful, this approach is limited by its
simplicity and is defective in capturing temporal dynamics.

In this paper, we focus on generating personalized rec-
ommendations by utilizing users’ purchasing histories. Based
on the purpose of capturing evolving preferences of users,
we treat each user’s purchasing history as a sequence of
purchased items sorted by timestamp. Figure 2 shows a set
of purchasing sequences generated from purchasing matrix
data in Figure 1. Notice that in this paper, we only consider

—33—



purchasing behaviors of users and assume that all rating values
on purchased items are unavailable. Therefore, in experiments,
we transform rating matrix into purchasing history matrix
by simply regarding rating values as ls. This is reasonable
because the rating matrix dataset does not only tell us the
rating values, but also which movies users watched, regardless
of how they rated these movies.

Given a purchasing sequence of a user, we are interested in
predicting the most possible next element of this sequence.
The motivation of doing such prediction is based on the
idea that users’ past purchasing histories have influence on
their future behaviors. The closer a purchasing history is, the
larger the influence for next purchase has. In the meanwhile,
we assume that similar users will have similar purchasing
sequential patterns, which is similar to the assumption in CF.
As a result, the collaborative filtering recommendation task
becomes a sequence prediction task.

Recently, a number of tasks have been done using Recurrent
Neural Networks (RNNs), such as image caption generation
[28], speech recognition [9] and language modeling [17].
RNNs have shown a great success at modeling those sequential
data. For handling the sequential prediction task in recom-
mendation field, we choose Deep Recurrent Neural Networks
(DRNNSs) as our model because it shows a great ability in
long-short term memory which is useful for modeling temporal
dynamics. By modeling purchasing history, we are not only
utilizing sequential patterns from all users to generate recom-
mendations in the manner like CF, but also are monitoring the
changes of users’ preferences. Notice that the collaborative
filtering task is done implicitly in our model because we
are modeling sequential patterns generated from all users’
purchasing historires data. Contrast to approach in [13], our
model can learn temporal dynamics without setting special
designed parameters.

The rest of this paper is organized as follows. Section II
reviews related works. Section III presents the definition and
notations used in RNNs. We explain the details about our
proposed model in Section IV. Then, we examine the proposed
model by experiments in Section V. After that, Section VII
concludes the paper.

II. RELATED WORK
A. Collaborative Filtering

Most recommendation systems are based on Collaborative
Filtering. There are two primary approaches in CF, one is
neighborhood approach, another is latent factor approach.
Neighborhood models are based on the similarity among users
or items. For instance, two users are similar if they have rated
a similar set of items, which is called user-based approach [3].
On the other hand, item-based approach [23] compute a user’s
preference for an item based on user’s own ratings on similar
items. Latent factor models project users and items as vectors
in the same latent-factor space. In such space, users and items
are directly comparable. Most latent factor models are based
on factoring the user-item rating matrix using Singular Value
Decomposition (SVD) [20] .

B. Neural Networks in Recommendation Systems.

In [22], Restricted Boltzmann Machine (RBM) is used for
handling the recommendation task. Extending the idea of this
work, in [24], completion of rating matrix is split into encoding
step and decoding step. This is a kind of latent factor model
and the main task is the same as the one in Collaborative
Filtering. Latent factors are extracted by the neural network
model called Stacked Denoising Autoencoder (SDA). In [15],
RNNSs are used to model users’ sequential tweets for purchas-
ing behavior prediction. It is believed that previous tweets have
influence on following tweets and tweet is a efficient indicator
of user’s future purchasing behavior. RNN is also chose as one
of the approach in [2] for quote recommendation. This work
focuses on recommending proverbs and famous statements to
user who are writing based on the current body of the text.

C. Session-based Recommendation Systems

In [8], RNNs are used for session-based recommendations.
A session contains pages clicked by a user in a web session.
Each session is regarded as a sequence of pages sorted by
timstamp. The target is to generate the real-time recommen-
dation based on session data rather than historical rating data.
Session-based approach focus on recommending users with
items they are searching for currently. As a result, the path of
pages needed for each user to click is shorten, thus time is
saved. This work uses DRNN with multiple hidden layers to
model session data. Since length of sessions are very different
and the goal is to capture how a session evolves over time,
the model is trained in a session-parallel manner. Another
important reason for using session-parallel training manner is
that sessions are time-sensitive, which means each session is
generated by a user in a short period of time, thus breaking
down a session into fragments will make no sense. During
training stage, losses are measured using ranking loss such as
Bayesian Personalized Ranking (BPR) [21] and TOP1 [8].

The work in [8] is related to ours, but instead of modeling
sessions, we build a DRNN-based model to deal with users’
purchasing history data. We train our DRNN model in a
sequence-to-sequence manner [17] for several reasons. Firstly,
in our case, purchasing sequences are not so time-sensitive
as sessions. Secondly, purchasing sequences are in average
much longer than session sequences. There are even lots of
purchasing sequences with length larger than one thousand.
Finally, our goal is to capture the temporal dynamics within
purchasing sequences while executing collaborative filtering.
This training manner enables our model to generate prediction
based on a fragment of one purchasing sequence rather than
the whole sequence. As for measuring loss, instead of using
ranking loss, we use cross entropy to measure the losses
between predictions and true labels.

III. RECURRENT NEURAL NETWORKS

A. Basic Recurrent Neural Network

RNN is a kind of artificial neural network good at modeling
sequential data. It maintains a state which can be updated
as time goes on, so previous information can be memorized
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Fig. 3. Basic RNN structure and unfolded RNN structure.

and utilized for current prediction. Each sequence is split into
multiple elements. At each time step, one element is used as
an input. As shown in Figure 3, blank circle represents a state
and gray circle represents a input. If we unfolded the RNN
according to time steps, we can represent RNN as the network
like the one shown in right part of Figure 3. Output and input
at each time step is denoted as o; and x;. The state s; is
updated based on previous s;_; and current input x;:

S; = f(UCL'l + Wsifl)

where f is a non-linear activation function such as ReLU, tanh
and sigmoid.
The output at time step i is computed as:

0; = softmax(Vs;)

B. Deep Recurrent Neural Network

Deep learning allows computational models that are com-
posed of multiple processing layers to learn representations of
data with multiple levels of abstraction [16]. It has attracted
lots of attentions and shown a great success in the field such
as speech recognition [9], image recognition [7] and natural
language processing [26].

Since RNN has self-loop structure, it is already a kind of
deep neural network to some extent. However, [18] shows that
RNNSs can be made deeper in several different ways. Their ex-
periments demonstrate that DRNNs can learn representations
of data better and outperform vanilla RNNs in lots of tasks. In
this paper we make RNN deeper by adding multiple hidden
layers. The structure of our model in shown in Figure 4.

IV. PROPOSED APPROACH
A. RNNs for Recommendations

By sorting according to timestamp, each user’s purchasing
history can be represented as [x1, x2, ..., T7—1, TT], Where z;
(1 <1i < 7T)is the index of one rated item from the items set
of size m. The structure of our model is shown in Figure4. In
our model, we use m-dimensional one-hot vector to represent
x;, which means x; € R™. We call such sorted purchasing
histories as purchasing sequences.

Given a purchasing sequence X = [z1,Z2,...,2,—1,2,] (1
<1 < T), our DRNN model will give the output y, where y
[Y1,Y2; s Ym—1,Ym]E R™. y is a probability distribution
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Fig. 4. DRNN with two hidden layers
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Fig. 5. Training and test stages using RNN with two hidden layers.
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over all m items, where y; is the probability of item i to be
the next element of this sequence. Therefore, recommendation
task is changed into a sequence predication problem. Besides,
since recommendation systems usually recommend multiple
items to each user, we rank y’s elements and choose the top-
K items as the recommendation list.

B. Training Stage

During the training stage, as shown in Figure 5, we set

a fixed size of time steps T for unfolding the network. We
N .

use {[z1,x2,...,xr_1]j, [T2, T3, -.-,IT—1,IT]j}j:1 as train-
ing data and train the model in a sequence-to-sequence man-
ner. [z1, 2, ..., xr—1]; is the input and [z, z3, ..., 27_1, T7);
is the corresponding true output. Backpropagation-Through-
Time (BPTT) [27] is used for propagating gradients of errors.
Error is computed using cross entropy loss function:

n

—> " yilog(ys)

=0

cross_entropy (y' 'Y ) =

(Where y/ is the true probability distribution and y is the
predicted probability distribution.) BPTT is a variant of back-
propagation method used in training feedforward neural net-
works. Using BPTT, error at each time step is backpropagated
to previous time steps. i.e., BPTT applies backpropagation
method to unfolded RNN. Besides we use Adagrad [6] as
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the optimization method. It is a modified stochastic gradi-
ent descent method with per-parameter learning rate. Using
Adagrad, weights are updated in a mini-batch manner, which
means at each updating step, gradient of a random sampled
mini-batch is computed rather than computing gradient of the
whole training data. In addition, dropout [29] is used in our
model as regularization method for alleviating overfitting.

C. Inference Stage

Figure 5 shows how the inference works. The goal of
inference is to predict the next element based on the infor-
mation provided by an inference sequence with length r. Each
inference sequence is a segment at the end of a purchasing
sequence. i.e, each user’s recent purchasing history is used
for generating recommendations. By generating inference se-
quence in this way, the bad impact of staled purchasing history
is avoided. Besides, our model is trained in a sequence-to-
sequence manner, when it comes to inference, input purchasing
sequences may take different lengths. Therefore, the value of
r in Figure 5 is variable for different purchasing sequences.
Besides, as stated in [10], it is difficult for RNNs to capture
long-term dependencies within sequence very well. As a
result, the length of inference sequence used is limited by
the dependencies learning ability of the model.

Since recommend a list of items is the common choice in
recommendation systems, we ranked items in the prediction
y by their values and choose the top-k items to form the
recommendation list.

V. EXPERIMENT

A. Experimental Setup

We use Movielens-1M dataset in our experiments. This
dataset contains 1,000,209 ratings over 3706 movies and 6040
users. Dataset is splitted into 3 subsets for training, validation
and testing usages. We generate these subsets by dividing users
into 3 groups. As a result, 3040 users’ data are used as training
data and 1500 users’ data are used for validation and test
respectively.

The model contains 2 hidden layers and each layer contains
200 Gated Recurrent Unit (GRU) [5] cells. We use GRU
since it achieves comparable performance as Long Short Term
Memory (LSTM) [11] while using less parameters. Our model
is trained with 50 time steps using BPTT. i.e., inference
sequence can not be longer than 50. Training sequence with
length less than 50 is padded with zeros at the end of the
sequence. Besides, errors of paddings are masked out. The
initial learning rate of Adagrad method is set to 1.0 and mini-
batch size is set to 100. To alleviate the gradient expoloding
problem [19], we clip the norm of the gradients (normalized
by minibatch size) at 5. Dropout probability is set to 0.5.
The model is implemented using Tensorflow [1], which is a
deep learning platform developed by Google. A GeForce GTX
1080Ti GPU is used to boost the training speed.

TABLE I
COMPARISON OF TOP-K RECOMMENDATION METHODS. (K=10)

Method Precision(%) Recall(%) F1-Score
Item-based 10.83 3.13 5.23
User-based 12.12 3.50 5.43
SVD 22.44 6.48 10.06
MF-implicit 18.58 5.37 8.33
RNN 26.46 7.65 11.87

B. Experimental Results

We compare several recommendation methods with our
approach. Those methods are Item-based CF, User-based CF,
SVD and Matrix Factorization for implicit feedback (MF-
implicit) [12]. Among these methods, MF-implicit and our
DRNN-based method use purchasing history data while others
use users’ ratings for generating recommendations. Notice
that MF-implicit is the state-of-the-art work on collaborative
filtering using implicit feedback dataset.

Evaluations are executed using Precision, Recall and F1-
Score measurements. Table I shows the evaluation results
of five methods on top-K recommendation task where K
equals 10. It demonstrates that our DRNN-based approach
outperforms other four approaches.

To clarify the ability of our approach, as shown in Figure
6 and Figure 7, we further measure recalls when changing
the value of K and measure the recall-precision relationship.
Notice that we use dash lines for methods utilizing implicit
feedback data and use solid lines for methods utilizing ratings
data. From Figure 6, we observe that when K is less than 15,
our RNN-based model outperforms all other approaches on
the recall measurement. A related phenomenon also appears
in Figure 7. We observe that when the recall is lower than
20%, RNN-based approach outperforms other approaches on
precision. This an evidence showing that users’ temporal
dynamics are well catched by DRNN-based model and global
sequential patterns are useful in handling the collaborative
filteirng task. Besides, the rapid decrease of precision in
Figure 7 is in accord with the feature of RNN stated in [4].
Since it is difficult for RNN to learn long-term dependencies,
RNN shows a rapid down in ability for generating large-size
recommendation list. However, since our model outperforms
others in cases where size of K is less than 15, it is suffice
to be applied to recommendation situations such as movie
recommendations and E-Commerce websites.

VI. CONCLUSION

In this paper, we transformed the recommendation task
into a sequence prediction task by utilizing RNN models.
In our method, we explored users’ purchasing history data
in a new way. Patterns within users’ rating sequences are
well modeled by the DRNN model with millions of tunable
parameters. Based on experiments, we observe a 1.17%, 4.02%
and 1.81 improvement over previous methods on Recall@10,
Precision@10 and F1-Score. Therefore, we conclude that our
method is competitive with previously proposed methods for
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handling recommendation using implicit feedback data. Be-
sides our model keeps the advantage of collaborative filteirng
and can capturing temporal dynamics by utilizing patterns
within sequences.
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