
High-performance and Secure
Just-in-time Compiler Protection

(preliminary version)
Tomoyuki Nakayama and Masanori Misono

Graduate School of Information Science and Technology
The University of Tokyo

Tokyo, Japan
{nakayama,misono}@os.ecc.u-tokyo.ac.jp

Takahiro Shinagawa
Information Technology Center

The University of Tokyo
Tokyo, Japan

shina@ecc.u-tokyo.ac.jp

Abstract—Modern browsers have just-in-time (JIT) compilers
that compile JavaScript programs into native binary code on
the fly. Since recent JIT compilers put JavaScript data into
non-executable memory regions, simply putting shell code as
JavaScript data does not work. To overcome this protection,
recent attacks exploit constants in JavaScript programs that are
complied into instructions placed in code regions, and use them
as small pieces of code, called gadgets, to chain them by return-
oriented programming (ROP). To counter this attack, recent
browsers introduce constant blinding that encrypts JavaScript
constants with a secret key and decrypts them at run time,
preventing attackers from inserting arbitrary gadgets. Unfor-
tunately, current browsers (including Firefox, Google Chrome,
and Microsoft Edge) only blind constants larger than two bytes
for the performance reason, allowing attackers to emit one and
two byte gadgets that are known to be sufficient to mount ROP
attacks. This paper proposes a high-performance and secure
constant blinding technique for JIT compilers. In this technique,
we decide whether to blind a constant based on the value of the
constant. If a constant includes a value that can be interpreted
as a control flow instruction (e.g. ret and jmp), we blind that
constant even if it is two bytes or less. Otherwise, we do not
blind the constant because it cannot be used as a gadget. This
technique effectively reduces the overhead of constant blinding
by reducing the number of constants that must be blinded, while
improving the security by eliminating the possibility that even
small constants are exploited as gadgets. We implemented this
technique in ChakraCore, the JIT Engine of Microsoft Edge,
running on x64 systems and measured the performance of the
JIT engine. Experimental results confirmed that our technique
improved performance by maximum of 2.85% compared with
blinding all constants.

Index Terms—Code-reuse attacks, JIT compiler, return-
oriented programming, constant blinding

I. INTRODUCTION

Web browsers are found on PCs, tablets, smartphones,
smart TVs, gaming consoles, and so forth. Almost everybody
surfs the Internet every day. Thanks to the prevalence of the
Internet, web browser developers are struggling to pursue the
performance or processing speed. Modern browsers such as
Google Chrome, Microsoft Edge, Mozilla Firefox, and Apple
Safari have their own just-in-time (JIT) compliers. JavaScript
programs are compiled to intermediate representations in ad-

vance. Then they are re-compiled to native code at runtime
by JIT compilers. This mechanism contributes to high speed
code execution.

These familiar browsers, however, are often targeted by soft-
ware exploitations. For example, attackers declare numerous
constants in JavaScript programs. Then, after JIT compilation,
the attacker can use JITed code as shellcode, if there exists
some vulnerabilities in JIT compilers about manipulating the
instruction pointer. Constant blinding is one of the defenses
against such attacks. It blinds constants in JavaScript programs
by XORing with random value.

Besides constant blinding, there are many research on
protecting JITed code layouts. INSeRT [41] and librando [26]
randomize the JITed code by randomly inserting either illegal
instructions (INSeRT) or NOP instructions (librando) into the
code. Libmask [27] transforms constants into global variables
and marks the memory pages for these global variables as read
only.

Current constant blinding, however, targets all constants
larger than two bytes. Further, due to performance impacts,
constants less than two bytes are ignored. Still, recent study
showed that you can succeed in exploiting by using only one-
byte and two-byte constants.

In this paper, we propose secure and high-performance con-
stant blinding. It only blinds constants that contain values such
that they are translated into control flow changing instructions
(ret, for example) by JIT compilation.

We implemented the proposal in ChakraCore, the open-
source software of Microsoft Edge’s JIT compiler Chakra,
and ran several benchmarks. The results showed that the
performance was improved by the maximum of 2.85%and
indicated the effectiveness of our proposal.

II. BACKGROUND

Memory disclosure attacks have been main attacks against
computer systems. They have the ability to execute arbitrary
code on remote target systems after hijacking the control flow.
Memory disclosures which leak code pointers enable attackers
to bypass defense schemes like ASLR and exploit binaries

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 7, Number 1, pages 59–65, January 2018

– 59 –



using ROP [37], JOP [15], and so on [7] [9] [10] [15]. These
attacks are called code-reuse attacks (CRAs). CRAs divert
programs’ control flow to gadgets located at predetermined
memory address and chain together to construct malicious
payloads [15] [21] [24] [14] [37].

To thwart these attacks, many kinds of solution have been
proposed so far. They are classified into two methods: control
flow integrity (CFI) and fine-grained code randomization. The
former prevents attackers from redirecting the program execu-
tion flow [1] [34] [42] [43]. CFI, however, have been targeted
and exploited by many kinds of attacks [?] [24] [21] [14]. The
latter diversifies the code and therefore makes attackers thwart
the reuse of instruction sequences. There are some levels of
diversification granularities; function [6] [28], basic block [22]
[40], and instruction [25] [33]. Unfortunately, in spite of much
efforts above, a lot of studies, say, direct memory disclosure
attacks [38] [39], indirect leakage of address from the stack
and heap [20], and side-channel attacks [5] [11] [32] [36] have
succeeded in bypassing code randomization defenses.

A. JIT Exploitations

(Direct) JIT-ROP [38] leverages scripting environment such
as JavaScript (or ActionScript) and dynamically searches for
gadgets in code areas via memory disclosure vulnerabilities.
Attackers use such vulnerabilities to follow code pointers and
collect as many code pages as possible. Attackers finally
search for desired gadgets and API function calls in these
pages and defeat fine-grained diversifications. Execute-only
memory is used as leakage-resilient defense. A lot of research
has proposed to use a combination of execute-only memory
and randomized memory segments to defend randomized code
layouts from direct leakage, say, JIT-ROP attacks [29] [12]
[13] [18] [19] [20] [23].

Oxymoron [4] is the first protection against JIT-ROP. It uses
x86 memory segmentation to hide references between code
pages and impedes the recursive gadget harvesting. Both XnR
[3] and HideM [23]prevent code pages from being read by
emulating the execute-only memory. XnR marks code pages
with ”Not Present”; whenever an instruction fetch or data
access is attempted on a code page, it brings a page fault. Then
the OS verifies the source of the page fault and marks the page
as present, readable and executable, or terminates execution.
HideM uses the split-TLB to direct instruction fetches and
data reads to different physical memory locations in order to
transparently prevent code from being read by memory deref-
erencing operations. Thus HideM allows instruction fetches of
code and prevents data accesses.

Nevertheless, some research demonstrated that Oxymoron,
XnR, and HideM are bypassed by indirect JIT-ROP [20]
[16]. Indirect JIT-ROP simply harvests code pointers from
readable data pages and constructs ROP payloads. Readactor
[18] is the first system that defend both types of JIT-ROP
attacks. Readactor implements code pointer hiding [30], fine-
grained randomization, and execute-only memory with a thin
hypervisor. Although execute-only memory and fine-grained
randomization prevent only direct JIT-ROP, code pointer hid-

ing mitigates indirect JIT-ROP by hiding code pointer desti-
nations and replacing code pointers in readable memory with
trampoline layers in execute-only memory.

JIT Spraying [8] [35] (and subspecies of that [2]) is different
from aforementioned attacks. Attackers prepare JavaScript
programs containing numerous constant values which can
be erroneously executed as attacker-controlled instruction se-
quences by JIT compilation. The attackers use some vulnera-
bilities such as manipulating the EIP to redirect code flow to
the native code. This fact means that the attacker can execute
hidden shellcode.

III. CONSTANT BLINDING

To tackle with JIT exploitations, Chakra, the JIT engine of
Microsoft Edge, deploys defense mechanism called constant
blinding. It masks constants in JavaScript programs by XOR-
ing with randomly generated value during JIT compilation.
For example, considering that RND KEY = 0x2511663F,
following instruction

mov eax, 0x3C909090

will be transformed into two instruction sequences by con-
stant blinding. Although constant blinding brings additional
overhead (increases instructions), It makes JIT engine safe
because the attacker can no longer use the constants he
prepared.

mov eax, 0x1981F6AF
xor eax, 0x2511663F

Existing constant blinding, however, has two problems.
First, constants under two bytes are ignored, because of
performance overheads. This design is unfavorable because
certain research have proposed to exploit JIT compilers using
only one or two-byte constants [2]. Second, constant blinding
is applied to whatever constants larger than two bytes. This
problem causes JIT engines high performance overhead.

IV. DESIGN AND IMPLEMENTATION

Therefore we aim to propose secure and high-performance
constant blinding. We concentrate on values which change the
control flow of the program. Our proposed constant blinding
only blinds constants which contain those values, regardless
of their sizes.

For example, ”RET” transfers program control flow to a
return address located on the top of the stack. Actually,
return-oriented programming (ROP), one of the famous exploit
techniques [37], uses instruction sequences which end with
RET instruction (called gadgets).

We decided the constants to be targeted in our proposal.
They are described in TABLE IV [17].

V. EXPERIMENTS AND RESULTS

We use the version 2.0.0.0 of ChakraCore with Clang 5.0.0
and Cmake 3.9.0. As for comparison, we use four different
source code: no-modified (”Default”), constant blinding to
all constants (”All-Blind”), disable constant blinding (”No-
Blind”), and the proposal (”Propose”). For each, we build

– 60 –



Instructions Opcode
RET C3, CB, C2, CA
JMP E8, FF, 9A

CALL EB, E9, EA
SYSCALL 0F 05

INT n, INTO, INT 3 CD, CE, CC
TABLE I

THE LIST OF SPECIFIC CONSTANTS WHICH OUR PROPOSAL TARGETS

Benchmark Propose/No-Blind Propose/Default Propose/All-Blind
JetStream 99.21% 101.24% 102.85%

Octane 99.61% 100.70% 100.60%
Kraken 100.15% 98.88% 99.04%

SunSpider 99.07% 100.13% 98.37%
TABLE II

COMPARISON OF RELATIVE VALUES FOR EACH FOUR BENCHMARKS

ChakraCore and run four benchmarks: JetStream, Octane,
Kraken, and SunSpider, all of them are JavaScript benchmarks
for web browsers.

The evaluation was performed on a PC with Intel Core
i7-3630QM processor, 16.0GB RAM running Ubuntu 16.04
(x64). Also we disabled Intel TurboBoost Technology, Intel
HyperThreading Technology, and Intel SpeedStep Technology.

Fig.1, Fig.2, Fig.5, and Fig.6 represents the results of
running JetStream, Octane, Kraken, and SunSpider for each
four kinds of source code. According to them, for almost all
programs (x axis), the values of ”Propose” is between ”No-
Blind”, the best performance case, and ”All-Blind”, the worst
performance case.

Fig.3, Fig.4, Fig.7, and Fig.8 represents the improvements of
”Propose” over ”Default”. The key point of this comparison is
that both of them are under the same security level. According
to them, the benchmark results indicate that ”Propose” is su-
perior to ”All-Blind”. Considering qualitatively, our proposal
has benefit of better performance because the target constants
to be constant-blinded is less. However, we cannot observe
this benefit significantly than we expected. This is because
the influence of CPU is stronger than that of our proposal. So
we are now conducting on evaluations for ARM CPU, most
of IoT devices or moblile devices run under ARM CPUs and
therefore this try will be meaningful.

TABLE.II describes performance improvements of ”Pro-
pose” among four benchmarks. Be careful that both JetStream
and Octane measure program processing speed per unit of
time, so higher value is better. On the contrary, both Kraken
and SunSpider measure execution time, so lower value is
better. Based on these benchmark characteristics, you can find
that all values go better in the column of ”Propose/All-Blind”.
These results indicate the effectiveness of our proposal.

– 61 –



Fig. 1. The Results of running JetStream benchmark

0

50

100

150

200

250

300

V
a
l
u
e
 
(
 
H
i
g
h
e
r
 
i
s
 
B
e
t
t
e
r
 
)

b
i
g
f
i
b
.
c
p
p

c
o
n
t
a
i
n
e
r
.
c
p
p

d
r
y
.
c

f
l
o
a
t
-
m
m
.
c

g
c
c
-
l
o
o
p
s
.
c
p
p

h
a
s
h
-
m
a
p

n
-
b
o
d
y
.
c

q
u
i
c
k
s
o
r
t
.
c

t
o
w
e
r
s
.
c

c
d
j
s

S
c
o
r
e

Default

No-Blind

Propose

All-Blind

Fig. 2. The Results of running Octane benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
×10

4

V
a
l
u
e
 
(
 
H
i
g
h
e
r
 
i
s
 
B
e
t
t
e
r
 
)

R
i
c
h
a
r
d
s

D
e
l
t
a
B
l
u
e

C
r
y
p
t
o

R
a
y
T
r
a
c
e

E
a
r
l
e
y
B
o
y
e
r

R
e
g
E
x
p

S
p
l
a
y

S
p
l
a
y
L
a
t
e
n
c
y

N
a
v
i
e
r
S
t
o
k
e
s

P
d
f
J
S

M
a
n
d
r
e
e
l

M
a
n
d
r
e
e
l
L
a
t
e
n
c
y

G
a
m
e
b
o
y

C
o
d
e
L
o
a
d

B
o
x
2
D

z
l
i
b

T
y
p
e
s
c
r
i
p
t

S
c
o
r
e

Default

No-Blind

Propose

All-Blind

Fig. 3. The improvements of ”Propose”
over ”All-Blind” in JetStream benchmark

0

20

40

60

80

100

120

P
e
r
f
o
r
m
a
n
c
e
 
I
m
p
r
o
v
e
m
e
n
t
s
[
%
]

b
i
g
f
i
b
.
c
p
p

c
o
n
t
a
i
n
e
r
.
c
p
p

d
r
y
.
c

f
l
o
a
t
-
m
m
.
c

g
c
c
-
l
o
o
p
s
.
c
p
p

h
a
s
h
-
m
a
p

n
-
b
o
d
y
.
c

q
u
i
c
k
s
o
r
t
.
c

t
o
w
e
r
s
.
c

c
d
j
s

S
c
o
r
e

JetStream

Fig. 4. The improvements of ”Propose”
over ”All-Blind” in Octane benchmark

0

20

40

60

80

100

120

P
e
r
f
o
r
m
a
n
c
e
 
I
m
p
r
o
v
e
m
e
n
t
s
[
%
]

R
i
c
h
a
r
d
s

D
e
l
t
a
B
l
u
e

C
r
y
p
t
o

R
a
y
T
r
a
c
e

E
a
r
l
e
y
B
o
y
e
r

R
e
g
E
x
p

S
p
l
a
y

S
p
l
a
y
L
a
t
e
n
c
y

N
a
v
i
e
r
S
t
o
k
e
s

P
d
f
J
S

M
a
n
d
r
e
e
l

M
a
n
d
r
e
e
l
L
a
t
e
n
c
y

G
a
m
e
b
o
y

C
o
d
e
L
o
a
d

B
o
x
2
D

z
l
i
b

T
y
p
e
s
c
r
i
p
t

S
c
o
r
e

Octane

– 62 –



Fig. 5. The Results of running Kraken benchmark

0

50

100

150

200

250

300

350

400

T
i
m
e
 
[
m
s
e
c
]
 
(
 
L
o
w
e
r
 
i
s
 
B
e
t
t
e
r
 
)

a
i
-
a
s
t
a
r

a
u
d
i
o
-
b
e
a
t
-
d
e
t
e
c
t
i
o
n

a
u
d
i
o
-
d
f
t

a
u
d
i
o
-
f
f
t

a
u
d
i
o
-
o
s
c
i
l
l
a
t
o
r

i
m
a
g
i
n
g
-
d
a
r
k
r
o
o
m

i
m
a
g
i
n
g
-
d
e
s
a
t
u
r
a
t
e

i
m
a
g
i
n
g
-
g
a
u
s
s
i
a
n
-
b
l
u
r

j
s
o
n
-
p
a
r
s
e
-
f
i
n
a
n
c
i
a
l

j
s
o
n
-
s
t
r
i
n
g
i
f
y
-
t
i
n
d
e
r
b
o
x

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
a
e
s

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
c
c
m

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
p
b
k
d
f
2

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
s
h
a
2
5
6
-
i
t
e
r
a
t
i
v
e

Default

No-Blind

Propose

All-Blind

Fig. 6. The Results of running SunSpider benchmark

0

5

10

15

20

25

30

35

40

45

T
i
m
e
 
[
m
s
e
c
]
 
(
 
L
o
w
e
r
 
i
s
 
B
e
t
t
e
r
 
)

3
d
-
c
u
b
e

3
d
-
m
o
r
p
h

3
d
-
r
a
y
t
r
a
c
e

a
c
c
e
s
s
-
b
i
n
a
r
y
-
t
r
e
e
s

a
c
c
e
s
s
-
f
a
n
n
k
u
c
h

a
c
c
e
s
s
-
n
b
o
d
y

a
c
c
e
s
s
-
n
s
i
e
v
e

b
i
t
o
p
s
-
3
b
i
t
-
b
i
t
s
-
i
n
-
b
y
t
e

b
i
t
o
p
s
-
b
i
t
s
-
i
n
-
b
y
t
e

b
i
t
o
p
s
-
b
i
t
w
i
s
e
-
a
n
d

b
i
t
o
p
s
-
n
s
i
e
v
e
-
b
i
t
s

c
o
n
t
r
o
l
f
l
o
w
-
r
e
c
u
r
s
i
v
e

c
r
y
p
t
o
-
a
e
s

c
r
y
p
t
o
-
m
d
5

c
r
y
p
t
o
-
s
h
a
1

d
a
t
e
-
f
o
r
m
a
t
-
t
o
f
t
e

d
a
t
e
-
f
o
r
m
a
t
-
x
p
a
r
b

m
a
t
h
-
c
o
r
d
i
c

m
a
t
h
-
p
a
r
t
i
a
l
-
s
u
m
s

m
a
t
h
-
s
p
e
c
t
r
a
l
-
n
o
r
m

r
e
g
e
x
p
-
d
n
a

s
t
r
i
n
g
-
b
a
s
e
6
4

s
t
r
i
n
g
-
f
a
s
t
a

s
t
r
i
n
g
-
t
a
g
c
l
o
u
d

s
t
r
i
n
g
-
u
n
p
a
c
k
-
c
o
d
e

s
t
r
i
n
g
-
v
a
l
i
d
a
t
e
-
i
n
p
u
t

Default

No-Blind

Propose

All-Blind

Fig. 7. The improvements of ”Propose”
over ”All-Blind” in Kraken benchmark

0

20

40

60

80

100

120

T
i
m
e
 
R
e
d
u
c
t
i
o
n
 
R
a
t
e
s
[
%
]

a
i
-
a
s
t
a
r

a
u
d
i
o
-
b
e
a
t
-
d
e
t
e
c
t
i
o
n

a
u
d
i
o
-
d
f
t

a
u
d
i
o
-
f
f
t

a
u
d
i
o
-
o
s
c
i
l
l
a
t
o
r

i
m
a
g
i
n
g
-
d
a
r
k
r
o
o
m

i
m
a
g
i
n
g
-
d
e
s
a
t
u
r
a
t
e

i
m
a
g
i
n
g
-
g
a
u
s
s
i
a
n
-
b
l
u
r

j
s
o
n
-
p
a
r
s
e
-
f
i
n
a
n
c
i
a
l

j
s
o
n
-
s
t
r
i
n
g
i
f
y
-
t
i
n
d
e
r
b
o
x

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
a
e
s

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
c
c
m

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
p
b
k
d
f
2

s
t
a
n
f
o
r
d
-
c
r
y
p
t
o
-
s
h
a
2
5
6
-
i
t
e
r
a
t
i
v
e

Kraken

Fig. 8. The improvements of ”Propose”
over ”All-Blind” in SunSpider benchmark

0

20

40

60

80

100

120

140

T
i
m
e
 
R
e
d
u
c
t
i
o
n
 
R
a
t
e
s
[
%
]

3
d
-
c
u
b
e

3
d
-
m
o
r
p
h

3
d
-
r
a
y
t
r
a
c
e

a
c
c
e
s
s
-
b
i
n
a
r
y
-
t
r
e
e
s

a
c
c
e
s
s
-
f
a
n
n
k
u
c
h

a
c
c
e
s
s
-
n
b
o
d
y

a
c
c
e
s
s
-
n
s
i
e
v
e

b
i
t
o
p
s
-
3
b
i
t
-
b
i
t
s
-
i
n
-
b
y
t
e

b
i
t
o
p
s
-
b
i
t
s
-
i
n
-
b
y
t
e

b
i
t
o
p
s
-
b
i
t
w
i
s
e
-
a
n
d

b
i
t
o
p
s
-
n
s
i
e
v
e
-
b
i
t
s

c
o
n
t
r
o
l
f
l
o
w
-
r
e
c
u
r
s
i
v
e

c
r
y
p
t
o
-
a
e
s

c
r
y
p
t
o
-
m
d
5

c
r
y
p
t
o
-
s
h
a
1

d
a
t
e
-
f
o
r
m
a
t
-
t
o
f
t
e

d
a
t
e
-
f
o
r
m
a
t
-
x
p
a
r
b

m
a
t
h
-
c
o
r
d
i
c

m
a
t
h
-
p
a
r
t
i
a
l
-
s
u
m
s

m
a
t
h
-
s
p
e
c
t
r
a
l
-
n
o
r
m

r
e
g
e
x
p
-
d
n
a

s
t
r
i
n
g
-
b
a
s
e
6
4

s
t
r
i
n
g
-
f
a
s
t
a

s
t
r
i
n
g
-
t
a
g
c
l
o
u
d

s
t
r
i
n
g
-
u
n
p
a
c
k
-
c
o
d
e

s
t
r
i
n
g
-
v
a
l
i
d
a
t
e
-
i
n
p
u
t

SunSpider

– 63 –



VI. CONCLUSIONS AND FUTURE WORKS

As the complete eradication of memory disclosure vulner-
abilities remains a challenging task, defenses against their
exploits is necessary. In particular, web browsers are the
most targeted applications due to their popularity and property
of marking JITed code with RWX. To defend against such
attacks, modern browsers deploy a mitigating method called
constant blinding. It prevents JIT Spraying and JIT-ROP, and
related attacks by masking integer constants by XORing with
a random value to generate the obfuscated constant. However,
constant blinding is applied only constants larger than two
bytes and therefore bypassed by using only one-byte or two-
byte constants.

In this paper, we introduced a modified constant blinding
scheme. It utilizes constant blinding to only constants which
contain some control flow changing words, regardless of their
sizes. Then we demonstrated the performance evaluation on
ChakraCore. The results showed that our proposal performs
2.85% performance improvements at most.

You still have rooms to further improve secure constant
blinding. It is known that constant blinding is incomplete
in that constants in some JavaScript writing manners survive
constant blinding [31].

We will work on evaluating our proposal from various points
of view to prove its effectiveness objectively in real environ-
ment. Also, as there are a lot of cyber attacks targeting IoT
devices, we will introduce our proposal to ARM architecture
and survey the difference of benchmark results with those of
Intel CPU.

REFERENCES

[1] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, pages 340–353. ACM, 2005.

[2] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis. The Devil is in the Constants: Bypassing Defenses
in Browser JIT Engines. In Proceedings of the 13rd Conference on
Network and Distributed System Security Symposium (NDSS), 2015.

[3] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Ste-
fan Nürnberger, and Jannik Pewny. You Can Run but You Can’t Read:
Preventing Disclosure Exploits in Executable Code. In Proceedings of
the 21st ACM Conference on Computer and Communications Security
(CCS), pages 1342–1353. ACM, 2014.

[4] Michael Backes and Stefan Nürnberger. Oxymoron: Making Fine-
Grained Memory Randomization Practical by Allowing Code Sharing.
In Proceedings of the 23rd USENIX Security Symposium (USENIX
Security), volume 14. USENIX Association, 2014.

[5] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R Gross.
Cain: Silently Breaking ASLR in the Cloud. In Proceedings of the 9th
USENIX Conference on Offensive Technologies(WOOT), 2015.

[6] Sandeep Bhatkar, Daniel C DuVarney, and R Sekar. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proceed-
ings of the 14th USENIX Security Symposium (USENIX Security), pages
271–286. USENIX Association, 2005.

[7] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan
Boneh. Hacking Blind. In Proceedings of the 35th IEEE Symposium on
Security and Privacy (SP), pages 227–242. IEEE, 2014.

[8] Dionysus Blazakis. Interpreter Exploitation. In Proceedings of the
4th USENIX Conference on Offensive Technologies(WOOT). USENIX
Association, 2010.

[9] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang.
Jump-Oriented Programming: A New Class of Code-Reuse Attack.
In Proceedings of the 6th ACM Asia Conference on Computer and
Communications Security (ASIACCS), pages 30–40. ACM, 2011.

[10] Erik Bosman and Herbert Bos. Framing Signals-A Return to Portable
Shellcode. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (SP), pages 243–258. IEEE, 2014.

[11] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Dedup Est Machina: Memory Deduplication as an Advanced Exploita-
tion Vector. In Proceedings of the 37th IEEE Symposium on Security
and Privacy (SP), pages 987–1004. IEEE, 2016.

[12] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi,
Stephen Crane, Michael Franz, and Per Larsen. Leakage-Resilient
Layout Randomization for Mobile Devices. In Proceedings of the 14th
Conference on Network and Distributed System Security Symposium
(NDSS), 2016.

[13] Scott Brookes, Robert Denz, Martin Osterloh, and Stephen Taylor.
Exoshim: Preventing Memory Disclosure Using Execute-Only Kernel
Code. In Proceedings of the 11th International Conference on Cyber
Warfare and Security (ICCWS), pages 56–66, 2016.

[14] Nicholas Carlini and David Wagner. ROP is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security), pages 385–399. USENIX Association,
2014.

[15] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. Return-Oriented Pro-
gramming without Returns. In Proceedings of the 17th ACM Conference
on Computer and Communications Security (CCS), pages 559–572.
ACM, 2010.

[16] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. Losing Control: On the Effectiveness of Control-Flow
Integrity under Stack Attacks. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), pages
952–963. ACM, 2015.

[17] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual. Volume 3B: System programming Guide, 2011.

[18] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi,
Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael
Franz. Readactor: Practical Code Randomization Resilient to Memory
Disclosure. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (SP), pages 763–780. IEEE, 2015.

[19] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen,
Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn
De Sutter, and Michael Franz. It’s a TRaP: Table Randomization and
Protection against Function-Reuse Attacks. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
pages 243–255. ACM, 2015.

[20] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z
Snow, and Fabian Monrose. Isomeron: Code Randomization Resilient
to (Just-In-Time) Return-Oriented Programming. In Proceedings of
the 13rd Conference on Network and Distributed System Security
Symposium (NDSS), 2015.

[21] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained
Control-Flow Integrity Protection. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security). USENIX Association, 2014.

[22] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nürnberger, and
Ahmad-Reza Sadeghi. Gadge Me If You Can: Secure and Efficient Ad-
hoc Instruction-Level Randomization for x86 and ARM. In Proceedings
of the 8th ACM Asia Conference on Computer and Communications
Security (ASIACCS), pages 299–310. ACM, 2013.

[23] Jason Gionta, William Enck, and Peng Ning. HideM: Protecting the
Contents of Userspace Memory in the Face of Disclosure Vulnerabilities.
In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy (CODASPY), pages 325–336. ACM, 2015.

[24] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out Of Control: Overcoming Control-Flow Integrity. In
Proceedings of the 35th IEEE Symposium on Security and Privacy (SP),
pages 575–589. IEEE, 2014.

[25] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and
Jack W Davidson. ILR: Where’d My Gadgets Go? In Proceedings
of the 33rd IEEE Symposium on Security and Privacy (SP), pages 571–
585. IEEE, 2012.

[26] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
librando: Transparent Code Randomization for Just-In-Time Compilers.
In Proceedings of the 20th ACM Conference on Computer and Commu-
nications Security (CCS), pages 993–1004. ACM, 2013.

– 64 –



[27] Abhinav Jangda, Mohit Mishra, and Benoit Baudry. libmask: Protecting
Browser JIT Engines from the Devil in the Constants. In Proceedings
of the 14th Annual Conference on Privacy, Security and Trust (PST).
IEEE, 2016.

[28] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng
Ning. Address Space Layout Permutation (ASLP): Towards Fine-
Grained Randomization of Commodity Software. In Proceedings of
the 22nd Annual Computer Security Applications Conference (ACSAC),
pages 339–348. IEEE, 2006.

[29] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. Architectural Support
for Copy and Tamper Resistant Software. ACM SIGPLAN Notices,
35(11):168–177, 2000.

[30] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P Chung, Taesoo
Kim, and Wenke Lee. ASLR-Guard: Stopping Address Space Leakage
for Code Reuse Attacks. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), pages 280–291. ACM,
2015.

[31] G. Maisuradze, M. Backes, and C. Rossow. Dachshund: Digging for and
Securing Against (Non-) Blinded Constants in JIT Code. In Proceedings
of the 15th Conference on Network and Distributed System Security
Symposium (NDSS), 2017.

[32] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. Poking Holes in Information Hiding. In Proceedings
of the 25th USENIX Security Symposium (USENIX Security), pages 121–
138. USENIX Association, 2016.

[33] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis.
Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (SP), pages 601–615. IEEE, 2012.

[34] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis.
Transparent ROP Exploit Mitigation Using Indirect Branch Tracing.
In Proceedings of the 22nd USENIX Security Symposium (USENIX
Security), pages 447–462. USENIX Association, 2013.

[35] Chris Rohlf and Yan Ivnitskiy. Attacking Clientside JIT Compilers.
Black Hat USA, 2011.

[36] Jeff Seibert, Hamed Okhravi, and Eric Söderström. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on Diver-
sified Code. In Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS), pages 54–65. ACM, 2014.

[37] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS),
pages 552–561. ACM, 2007.

[38] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A-R. Sadeghi. Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization. In Proceedings of the
34th IEEE Symposium on Security and Privacy (SP), pages 574–588.
IEEE, 2013.

[39] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven
Lachmund, and Thomas Walter. Breaking the memory secrecy assump-
tion. In Proceedings of the 2nd European Workshop on System Security,
pages 1–8. ACM, 2009.

[40] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin.
Binary Stirring: Self-Randomizing Instruction Addresses of Legacy x86
Binary Code. In Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS), pages 157–168. ACM, 2012.

[41] Tao Wei, Tielei Wang, Lei Duan, and Jing Luo. INSeRT: Protect
Dynamic Code Generation Against Spraying. In Proceedings of the
1st International Conference on Information Science and Technology
(ICIST), pages 323–328. IEEE, 2011.

[42] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical Control Flow
Integrity and Randomization for Binary Executables. In Proceedings of
the 34th IEEE Symposium on Security and Privacy (SP), pages 559–573.
IEEE, 2013.

[43] Mingwei Zhang and R Sekar. Control Flow Integrity for COTS Binaries.
In Proceedings of the 22th USENIX Security Symposium (USENIX
Security), pages 337–352. USENIX Association, 2013.

– 65 –


