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Abstract—Modern browsers have just-in-time (JIT) compilers
that compile JavaScript programs into native binary code on
the fly. Since recent JIT compilers put JavaScript data into
non-executable memory regions, simply putting shell code as
JavaScript data does not work. To overcome this protection,
recent attacks exploit constants in JavaScript programs that are
complied into instructions placed in code regions, and use them
as small pieces of code, called gadgets, to chain them by return-
oriented programming (ROP). To counter this attack, recent
browsers introduce constant blinding that encrypts JavaScript
constants with a secret key and decrypts them at run time,
preventing attackers from inserting arbitrary gadgets. Unfor-
tunately, current browsers (including Firefox, Google Chrome,
and Microsoft Edge) only blind constants larger than two bytes
for the performance reason, allowing attackers to emit one and
two byte gadgets that are known to be sufficient to mount ROP
attacks. This paper proposes a high-performance and secure
constant blinding technique for JIT compilers. In this technique,
we decide whether to blind a constant based on the value of the
constant. If a constant includes a value that can be interpreted
as a control flow instruction (e.g. ret and jmp), we blind that
constant even if it is two bytes or less. Otherwise, we do not
blind the constant because it cannot be used as a gadget. This
technique effectively reduces the overhead of constant blinding
by reducing the number of constants that must be blinded, while
improving the security by eliminating the possibility that even
small constants are exploited as gadgets. We implemented this
technique in ChakraCore, the JIT Engine of Microsoft Edge,
running on x64 systems and measured the performance of the
JIT engine. Experimental results confirmed that our technique
improved performance by maximum of 2.85% compared with
blinding all constants.

Index Terms—Code-reuse attacks, JIT compiler, return-
oriented programming, constant blinding

I. INTRODUCTION

Web browsers are found on PCs, tablets, smartphones,
smart TVs, gaming consoles, and so forth. Almost everybody
surfs the Internet every day. Thanks to the prevalence of the
Internet, web browser developers are struggling to pursue the
performance or processing speed. Modern browsers such as
Google Chrome, Microsoft Edge, Mozilla Firefox, and Apple
Safari have their own just-in-time (JIT) compliers. JavaScript
programs are compiled to intermediate representations in ad-

vance. Then they are re-compiled to native code at runtime
by JIT compilers. This mechanism contributes to high speed
code execution.

These familiar browsers, however, are often targeted by soft-
ware exploitations. For example, attackers declare numerous
constants in JavaScript programs. Then, after JIT compilation,
the attacker can use JITed code as shellcode, if there exists
some vulnerabilities in JIT compilers about manipulating the
instruction pointer. Constant blinding is one of the defenses
against such attacks. It blinds constants in JavaScript programs
by XORing with random value.

Besides constant blinding, there are many research on
protecting JITed code layouts. INSeRT [41] and librando [26]
randomize the JITed code by randomly inserting either illegal
instructions (INSeRT) or NOP instructions (librando) into the
code. Libmask [27] transforms constants into global variables
and marks the memory pages for these global variables as read
only.

Current constant blinding, however, targets all constants
larger than two bytes. Further, due to performance impacts,
constants less than two bytes are ignored. Still, recent study
showed that you can succeed in exploiting by using only one-
byte and two-byte constants.

In this paper, we propose secure and high-performance con-
stant blinding. It only blinds constants that contain values such
that they are translated into control flow changing instructions
(ret, for example) by JIT compilation.

We implemented the proposal in ChakraCore, the open-
source software of Microsoft Edge’s JIT compiler Chakra,
and ran several benchmarks. The results showed that the
performance was improved by the maximum of 2.85%and
indicated the effectiveness of our proposal.

II. BACKGROUND

Memory disclosure attacks have been main attacks against
computer systems. They have the ability to execute arbitrary
code on remote target systems after hijacking the control flow.
Memory disclosures which leak code pointers enable attackers
to bypass defense schemes like ASLR and exploit binaries
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using ROP [37], JOP [15], and so on [7] [9] [10] [15]. These
attacks are called code-reuse attacks (CRAs). CRAs divert
programs’ control flow to gadgets located at predetermined
memory address and chain together to construct malicious
payloads [15] [21] [24] [14] [37].

To thwart these attacks, many kinds of solution have been
proposed so far. They are classified into two methods: control
flow integrity (CFI) and fine-grained code randomization. The
former prevents attackers from redirecting the program execu-
tion flow [1] [34] [42] [43]. CFI, however, have been targeted
and exploited by many kinds of attacks [?] [24] [21] [14]. The
latter diversifies the code and therefore makes attackers thwart
the reuse of instruction sequences. There are some levels of
diversification granularities; function [6] [28], basic block [22]
[40], and instruction [25] [33]. Unfortunately, in spite of much
efforts above, a lot of studies, say, direct memory disclosure
attacks [38] [39], indirect leakage of address from the stack
and heap [20], and side-channel attacks [5] [11] [32] [36] have
succeeded in bypassing code randomization defenses.

A. JIT Exploitations

(Direct) JIT-ROP [38] leverages scripting environment such
as JavaScript (or ActionScript) and dynamically searches for
gadgets in code areas via memory disclosure vulnerabilities.
Attackers use such vulnerabilities to follow code pointers and
collect as many code pages as possible. Attackers finally
search for desired gadgets and API function calls in these
pages and defeat fine-grained diversifications. Execute-only
memory is used as leakage-resilient defense. A lot of research
has proposed to use a combination of execute-only memory
and randomized memory segments to defend randomized code
layouts from direct leakage, say, JIT-ROP attacks [29] [12]
[13] [18] [19] [20] [23].

Oxymoron [4] is the first protection against JIT-ROP. It uses
x86 memory segmentation to hide references between code
pages and impedes the recursive gadget harvesting. Both XnR
[3] and HideM [23]prevent code pages from being read by
emulating the execute-only memory. XnR marks code pages
with ”Not Present”; whenever an instruction fetch or data
access is attempted on a code page, it brings a page fault. Then
the OS verifies the source of the page fault and marks the page
as present, readable and executable, or terminates execution.
HideM uses the split-TLB to direct instruction fetches and
data reads to different physical memory locations in order to
transparently prevent code from being read by memory deref-
erencing operations. Thus HideM allows instruction fetches of
code and prevents data accesses.

Nevertheless, some research demonstrated that Oxymoron,
XnR, and HideM are bypassed by indirect JIT-ROP [20]
[16]. Indirect JIT-ROP simply harvests code pointers from
readable data pages and constructs ROP payloads. Readactor
[18] is the first system that defend both types of JIT-ROP
attacks. Readactor implements code pointer hiding [30], fine-
grained randomization, and execute-only memory with a thin
hypervisor. Although execute-only memory and fine-grained
randomization prevent only direct JIT-ROP, code pointer hid-

ing mitigates indirect JIT-ROP by hiding code pointer desti-
nations and replacing code pointers in readable memory with
trampoline layers in execute-only memory.

JIT Spraying [8] [35] (and subspecies of that [2]) is different
from aforementioned attacks. Attackers prepare JavaScript
programs containing numerous constant values which can
be erroneously executed as attacker-controlled instruction se-
quences by JIT compilation. The attackers use some vulnera-
bilities such as manipulating the EIP to redirect code flow to
the native code. This fact means that the attacker can execute
hidden shellcode.

III. CONSTANT BLINDING

To tackle with JIT exploitations, Chakra, the JIT engine of
Microsoft Edge, deploys defense mechanism called constant
blinding. It masks constants in JavaScript programs by XOR-
ing with randomly generated value during JIT compilation.
For example, considering that RND KEY = 0x2511663F,
following instruction

mov eax, 0x3C909090

will be transformed into two instruction sequences by con-
stant blinding. Although constant blinding brings additional
overhead (increases instructions), It makes JIT engine safe
because the attacker can no longer use the constants he
prepared.

mov eax, 0x1981F6AF
xor eax, 0x2511663F

Existing constant blinding, however, has two problems.
First, constants under two bytes are ignored, because of
performance overheads. This design is unfavorable because
certain research have proposed to exploit JIT compilers using
only one or two-byte constants [2]. Second, constant blinding
is applied to whatever constants larger than two bytes. This
problem causes JIT engines high performance overhead.

IV. DESIGN AND IMPLEMENTATION

Therefore we aim to propose secure and high-performance
constant blinding. We concentrate on values which change the
control flow of the program. Our proposed constant blinding
only blinds constants which contain those values, regardless
of their sizes.

For example, ”RET” transfers program control flow to a
return address located on the top of the stack. Actually,
return-oriented programming (ROP), one of the famous exploit
techniques [37], uses instruction sequences which end with
RET instruction (called gadgets).

We decided the constants to be targeted in our proposal.
They are described in TABLE IV [17].

V. EXPERIMENTS AND RESULTS

We use the version 2.0.0.0 of ChakraCore with Clang 5.0.0
and Cmake 3.9.0. As for comparison, we use four different
source code: no-modified (”Default”), constant blinding to
all constants (”All-Blind”), disable constant blinding (”No-
Blind”), and the proposal (”Propose”). For each, we build
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Instructions Opcode
RET C3, CB, C2, CA
JMP E8, FF, 9A

CALL EB, E9, EA
SYSCALL 0F 05

INT n, INTO, INT 3 CD, CE, CC
TABLE I

THE LIST OF SPECIFIC CONSTANTS WHICH OUR PROPOSAL TARGETS

Benchmark Propose/No-Blind Propose/Default Propose/All-Blind
JetStream 99.21% 101.24% 102.85%

Octane 99.61% 100.70% 100.60%
Kraken 100.15% 98.88% 99.04%

SunSpider 99.07% 100.13% 98.37%
TABLE II

COMPARISON OF RELATIVE VALUES FOR EACH FOUR BENCHMARKS

ChakraCore and run four benchmarks: JetStream, Octane,
Kraken, and SunSpider, all of them are JavaScript benchmarks
for web browsers.

The evaluation was performed on a PC with Intel Core
i7-3630QM processor, 16.0GB RAM running Ubuntu 16.04
(x64). Also we disabled Intel TurboBoost Technology, Intel
HyperThreading Technology, and Intel SpeedStep Technology.

Fig.1, Fig.2, Fig.5, and Fig.6 represents the results of
running JetStream, Octane, Kraken, and SunSpider for each
four kinds of source code. According to them, for almost all
programs (x axis), the values of ”Propose” is between ”No-
Blind”, the best performance case, and ”All-Blind”, the worst
performance case.

Fig.3, Fig.4, Fig.7, and Fig.8 represents the improvements of
”Propose” over ”Default”. The key point of this comparison is
that both of them are under the same security level. According
to them, the benchmark results indicate that ”Propose” is su-
perior to ”All-Blind”. Considering qualitatively, our proposal
has benefit of better performance because the target constants
to be constant-blinded is less. However, we cannot observe
this benefit significantly than we expected. This is because
the influence of CPU is stronger than that of our proposal. So
we are now conducting on evaluations for ARM CPU, most
of IoT devices or moblile devices run under ARM CPUs and
therefore this try will be meaningful.

TABLE.II describes performance improvements of ”Pro-
pose” among four benchmarks. Be careful that both JetStream
and Octane measure program processing speed per unit of
time, so higher value is better. On the contrary, both Kraken
and SunSpider measure execution time, so lower value is
better. Based on these benchmark characteristics, you can find
that all values go better in the column of ”Propose/All-Blind”.
These results indicate the effectiveness of our proposal.
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Fig. 1. The Results of running JetStream benchmark
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Fig. 2. The Results of running Octane benchmark
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Fig. 3. The improvements of ”Propose”
over ”All-Blind” in JetStream benchmark
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Fig. 4. The improvements of ”Propose”
over ”All-Blind” in Octane benchmark
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Fig. 5. The Results of running Kraken benchmark
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Fig. 6. The Results of running SunSpider benchmark
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Fig. 7. The improvements of ”Propose”
over ”All-Blind” in Kraken benchmark
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Fig. 8. The improvements of ”Propose”
over ”All-Blind” in SunSpider benchmark
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VI. CONCLUSIONS AND FUTURE WORKS

As the complete eradication of memory disclosure vulner-
abilities remains a challenging task, defenses against their
exploits is necessary. In particular, web browsers are the
most targeted applications due to their popularity and property
of marking JITed code with RWX. To defend against such
attacks, modern browsers deploy a mitigating method called
constant blinding. It prevents JIT Spraying and JIT-ROP, and
related attacks by masking integer constants by XORing with
a random value to generate the obfuscated constant. However,
constant blinding is applied only constants larger than two
bytes and therefore bypassed by using only one-byte or two-
byte constants.

In this paper, we introduced a modified constant blinding
scheme. It utilizes constant blinding to only constants which
contain some control flow changing words, regardless of their
sizes. Then we demonstrated the performance evaluation on
ChakraCore. The results showed that our proposal performs
2.85% performance improvements at most.

You still have rooms to further improve secure constant
blinding. It is known that constant blinding is incomplete
in that constants in some JavaScript writing manners survive
constant blinding [31].

We will work on evaluating our proposal from various points
of view to prove its effectiveness objectively in real environ-
ment. Also, as there are a lot of cyber attacks targeting IoT
devices, we will introduce our proposal to ARM architecture
and survey the difference of benchmark results with those of
Intel CPU.
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