
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

True Service Orientation with SORCER

Michael Sobolewski
Air Force Research Laboratory, WPAFB, Ohio 45433

Polish Japanese Academy of IT, 02-008 Warsaw, Poland
Email: sobol@sorcersoft.org

Abstract—Service-oriented Mogramming Language (SML) is
designed for service-orientation as UML was considered for
object-orientation. SML is also an executable language in the
SORCER platform based on service abstraction (everything is a
service) and three d of service-orientation: context awareness
(contexting), multifidelity, and multityping. Context awareness is
related to parametric polymorphism, multifidelity is a form of ad
hoc polymorphism, and multityping is a net-centric form of type
polymorphism. SML allows for defining polymorphic service
systems that can reconfigure and morph service collaborations at
runtime to definite an emergent form with distinct constraints
and heuristics. Here, emergence of service system refers to the
appearance of higher-level properties and behaviors of
collaborating service federations that come from the collective
dynamics of that collaborating networked services and activity of
service morphers that manage multifidelities at runtime. In this
paper the basic concepts of SML with the three design patterns
of service collaborations are presented. Its runtime environment
is introduced with the focus on the three pillars of service-
orientation.

Keywords—true service orientation, consumer services,
provider services, service mogramming language (SML),
multifidelities, emergent systems, mograms, mogramming,
SORCER

I. INTRODUCTION
Service-oriented architecture (SOA) emerged as an

approach to combat complexity and challenges of large
monolithic applications by offering collaborations of
replaceable functionalities by remote/local component services
with one another at runtime, as long as the semantics of the
component service is the same. However, despite many efforts,
there is a lack of good consensus on semantics of a service and
how to do true SOA well. The true SOA architecture should
provide the clear answer to the question: How a service
consumer can consume or compose some functionality from
provider services, while it doesn’t know where service
providers, implementing that functionality, are or even how to
communicate with them?

Many people think they are doing or talking about SOA,
but most of the time they’re really doing point-to-point
integration projects with APIs, web services, or even just point-
to-point XML (REST). The reason why this approach is
deficient is because service consumers should never
communicate directly to service providers. Why? First, the
main concept of SOA is that we want to deal with frequent and

unpredictable change by constructing an architecture that
loosely-couples the providers of capability from the consumers
of capability. It is not possible to have direct reliable
communication if variability exists in the network and
provided service capabilities evolve over time. Second, if we
are relying on a black-box middleware and often-proprietary
technology to manage service communication differences we
will simply shift all the complexity to end-points of services
and increasingly more complex, expensive, and brittle middle
point. Reworked middleware, what often is done and named as
SOA, isn’t the solution for a dynamic net-centric
communication and architecture.

Computer-aided engineering is the broad usage of
heterogeneous computer software for both standalone and
distributed systems to aid in engineering complex analyses and
optimization tasks. Multidisciplinary Analysis and Design
Optimization (MADO) is a domain of research that studies the
application of numerical analysis and optimization techniques
for the design of dynamic systems of systems involving
multiple coupled disciplines. The formulation of MADO
problems has become increasingly complex as the number of
disciplines and design variables included in typical studies has
grown from a few dozen to thousands when applying high-
fidelity physics-based modeling early in the design process [6].
Therefore, MADO is an appropriate domain for studying SOA
[4, 6, 7].

There are several trends that are forcing system
architectures to evolve due to complexity of problems being
solved presently [8]. Users expect a rich, interactive and
dynamic experience on a wide variety of friendly user agents
and highly modular and dynamic backend systems. Systems
must be highly scalable, highly available and run locally or
remotely, or both. Organizations often want to frequently roll
out updates, even multiple times a day. Consequently, it’s no
longer adequate to develop simple, monolithic applications. In
a dynamic system when its backend is morphing constantly to
emergent solution [3], the user agent has to support emergent
nature of its backend. Emergent system means net-centric to
refer to participating in distributed problem solving as a part of
a continuously evolving complex community of people,
devices, information and services interconnected by a
communication network to achieve optimal benefit of
resources and better synchronization of flowback events and
their consequences to the users. Emergent system means also
service-oriented (SO) and scalable with multiple
computational fidelities of services so your communication

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 1, pages 1–8, January 2019

– 1 –

network can be scaled up and down dynamically, from a single
computer to a large number of computers by adjusting fidelities
of service providers [9].

In declarative programming a process is expressed by the
logic of computation without describing its control flow. In
particular, the logic of computation in functional programming
is defined by a functional composition. A functional program is
stateless but imperative programs usually take advantages of a
shared state in an executing subroutine - a set of instructions
that implement a subprocess within a program. Object-oriented
(OO) programming is a convenience and ability to reason
about operations implemented by methods (subroutines) with a
common shared state represented by encapsulated variables.
Being able to hide details of algorithms and their data
structures can help reason about the logic of object
collaboration such that each object manages its own state by
own implementation of methods.

Service semantics can be either declarative, imperative, or
OO. A blend of all programming paradigms should be
supported by SO languages intended for solving complex
problems and building heterogeneous SO systems. Therefore,
component services should be expressed using effective
programming styles. Each programming paradigm introduces
distinguishing principles of its programming model but also
depends on its lower level paradigm. Therefore, the pillars of
SO programming introduced in this paper are layered on pillars
of OO, structured, and functional programming. The pillars of
SO programming are focused on context awareness,
multifidelity, and multityping for both service providers and
service federations.

The Service-ORiented Computing EnviRonment
(SORCER [7]) adheres to the true SO architecture based on
well-defined service abstractions and three pillars of SO
programming. Its unique SO approach distinguishes frontend
(process expression) services from backend (process
actualization) provider services (interface types), service
providers, and federations.

A service consumer is a composition of frontend request
services and a service provider is a composition of provider
services as shown in Fig. 1. A consumer is expressed in a SO
language but a provider is actualized as the OO remote/local
counterpart implementing multiple provider services. Frontend
services are references to backend services. Provider services
are service specifications–contracts but service providers are
implementations of contracts. A federated request service,
called a service mogram, corresponds to a union of service
collaborations, each represented by a component mogram. The
union under governance of the federated mogram represents an
actualized federation of service providers.

SO federalism is a compound model of governance with a
central (containing) mogram, component mograms, and a
network of service providers (citizens). The rules of federated
mogram governance are realized by a SO operating system
(federal government). The main purpose of the SO operating
system is to satisfy interests of service consumers and to fulfill
their needs using capabilities of federated service providers.

Mograms are structured from elementary request services
(entries and tasks) and other mograms. Entries and tasks
depend on operation services called signatures. Entries can
also use various types of evaluators to invoke local
subroutines. A signature is a reference to a remote/local
operation of service provider. The unique signature-based
architecture is about both service configuration complexity and
execution complexity that allows treating local and remote
service providers implementing subroutines uniformly at
various levels of granularity and fidelity. When dealing with
both complexities, you have a case to distribute services,
otherwise create a modular monolith with locally executable
modules as local services. Later, when complexity of the
system becomes unmanageable you can deploy almost
instantly the existing local service providers as network
services on as-needed basis, and then run changed services of
the original monolith in the network. In SORCER that is done
by changing the service type of signatures or just selecting the
service fidelity from local to network when requesting a
service provider. Service providers never communicate directly
with each other in SORCER. For executing mograms its
operating system creates communication networks of service
federations at runtime, as the operating system’s dynamic
processor.

Fig. 1. The semantics of services in SML.

– 2 –

The remainder of this paper is organized as follows:
Section 2 relates a SO computing platform to mogramming;
Section 3 describes the basic syntax and semantics of SML
with a mogramming example in Seciton 4; Section 5 relates
SML to the OO implementation in SORCER; then we
conclude with final remarks and comments.

II. PLATFORMS, OPERATING SYSTEMS, AND MOGRAMS
A computing platform is an expression of a runtime process

defined by programming language, operating system, and
processor. An operating system (OS) is system software that
manages a processor for the platform, executable codes of
applications, and provides common services including a shell
for executing and monitoring user applications. All user
applications require a kind of operating system to run. With
respect to various abstractions and granularity of user
applications, various platforms have been developed over time.
Granularity of computational units (instructions, commands,
callable units, objects, services) and various forms of program
compositions may differ but from the mathematical point of
view we can consider them conceptually as generic functions -
transformations or processes that map input data to output data.
Using the abstraction of generic function as a subroutine, SO
programming semantics can be generalized and differentiated
from functional, structured, and OO programing as illustrated
in Fig. 1. Hence, SO programming requires a corresponding
operating system and programming environment
(OS/language) as other programming paradigms. For example
UNIX/C for structured programming and JVM/Java for OO
programming.

A granularity of programs increases from a list of
instructions, via collaboration of objects to a network-centric
federation of service providers. A network-centric federation of
remote/local services is the actualization of federated a request
service (of Request type) that bind operation services (of
Signature type) to remote service providers (of Provider type)
and local objects created at runtime. Writing code as a list of
low-level machine instructions is a terrible way for humans to
reason and instruct computers. Objects have more humane
semantics but still low granularity for dynamic network-centric
service federations. Service providers are more like tools, and
utilities that can be aggregated into service collaborations and
expressed by the end users as higher-level instruction in service
federations.

Two types of frontend services are distinguished: operation
and request services. Operation services of Signature or
Evaluator types refer to remote/local or local subroutines,
correspondingly. Evaluators invoking subroutines are called
subroutine services. A request service is either elementary or
federated. Elementary ones use operation services but
federated ones specify how provider and subroutine services
are federated to collaborate. Note that an instruction in
structured programming or a method in OO programming is an
intrinsic component of programs. In SO programming a
request service is a program but an operation service is a
service handle that binds to a subroutine at runtime - no static
dependencies to remote subroutines. Request services can be
created with multifidelity signatures and entries to allow for
selecting preferred subroutine fidelities at runtime. That type of

service-orientation requires a relevant service modeling and/or
programming (mogramming [5]) language and a corresponding
operating system.

SORCER is a SO computing platform (implemented with
objects – see the UML relationships in Fig. 1 and in Fig. 2),
which provides SO mogramming with its service operating
system (SOS) that interprets and runs frontend request services
and dynamically manages corresponding backend federations
of remote/local service providers as its SO processor. In
SORCER, request services bind at runtime to created local
objects or to proxy objects that are created, registered, and
owned by service providers. SOS can provision missing service
providers at runtime if specified so by mogram signatures [8].

In summary, a request service is either elementary or
federated. An elementary service invokes a requested
subroutine but federated one invokes the federation of
providers and/or subroutines managed by SOS. A federated
request service – mogram – is an expression of a service
federation by one of the three federated design patterns:

1. entry model – is a declarative expression of interrelated
multiple service entries (responses) composed functionally
of dependent service entries in the model.

2. exertion – is an expression of hierarchically organized
exertions and mograms. An elementary exertion (Task)
executes a remote/local subroutine of a service provider.
An exertion block is a service procedure and exertion job
is an exertion composite. transmodel (madomodel) – is a
model that hierarchically aggregates subordinate models
as dependent disciplines.

3. transmodel (madomodel) – is a model that hierarchically
aggregates subordinate models and exertions as potentially
coupled disciplines.

Since either, a model or an exertion may comprise of
component mograms, therefore, a mogram is a service
expression of a multifidelity system of systems (mogram of
mograms) that federates various dependent subsystems
(exertions, models, and transmodels) into multiple fidelity
projections of hierarchically nested service federations created
and managed by SOS at runtime. Thus, each fidelity projection
is an instance of the system of systems.

The primary challenge of the SO architecture is to allow the
end user to use existing subroutines and service providers
exposing service types in the network. The secondary one to
create executable declarative and/or imperative federated
request services. In other words, instead of invoking statically
standalone service providers and subroutines or integrating
them with APIs, the computing environment should allow the
end users to create and execute directly in SML net-centric
service federations. Therefore, SO operating system is required
for mograms to manage and execute dynamic service
federations - its SO federated processor.

III. BASICS OF SERVICE MOGRAMMING LANGUAGE (SML)
The presented approach to service-orientation is based on

two abstract service categories (see Fig. 1): frontend services
(operation services and request services) and backend services

– 3 –

(provider, and federation services) with three pillars of service-
orientation: contexting, multifidelity, and multityping.

Contexting is a property of request services to aggregate
and exchange uniformly the state of collaborating services with
a generic data structure, called a data context. It is a form of
parametric polymorphism for services – the Context type as the
generic collection type of argument and return values for all
provider services.

Multifidelity is the morphing activity making decisions
about choices of service fidelities to be used by services at
runtime. It is a form of ad hoc polymorphism that defines
hierarchical control flow of executing services in mograms.

A multitype of a signature is a classifier of service
providers in the network, but a multi-multitype of mogram is a
classifier of service federations in the network. A set-theoretic
subtyping of multitypes defines an inheritance hierarchy of
service providers. Multityping is a net-centric form of type
polymorphism with set-theoretic subtyping of multitypes. It
defines the inheritance hierarchy of service providers and
federations in the network. A multitype N is assignable from a
multitype M, if N and M are the same, or each service type of N
is the member of multitype M. If N is assignable from M then
N is said to be a supermultitype of M. If M is a submultitype of
N, the multityping relation is defined, as N is a subset of M, to
mean that any signature of type M can be safely used in a
context where a signature of type N is expected. The same
applies to multi-multitypes that define the inheritance of
service federations.

Conceptually, if a service mapping f produces an output y,
when given an input x and there exist multiple implementations
fi1, fi2,… , fin of f called fidelities to produce y = f(x, fij, mFif), j
= 1, 2, …, n such that y = fij(x), for a multifidelity mFif = <fi1,
fi2,… , fin>, then f is called a multifidelity function with
selectable fidelities in mFif. In SML, a multifidelity service is
defined with domain specific multifidelities, potentially with
morphers and a fidelity manager that use provided strategies
(heuristics) to select the adequate fidelities implied by the
current results and service data context.

A signature binds dynamically by multiple service types
(multitype) to a service provider but a federated service binds
(by multiple multitypes of signatures (multi-multitype) to a
federation of service providers that can be also provisioned by
a multi-multitype. Service providers can be considered as
remote or local objects exposing implemented service types
that are used by signatures as a multitype used for binding to a
service provider in the network. In SML details of the input x
are hidden by embedding all formal parameters into a single
argument called data context used by all frontend services.

A service model SM in SML conceptually corresponds to a
multifidelity functional system. A multifidelity function

 f = (X, Y, fi(f), mFif)
is declared in SM as follows:

 func f = ent(“f”, mFif, args(“f1”, “f2”, …, “fk”))
where “f” is a name of the function f declared by the operator
ent, “f1”, “f2”, …, “fk” are argument identifiers of f , and mFif
is the multifidelity of f. By default a fidelity of f, fi(f), is the first
realization in the ordered set mFif . The identifiers “f1”, “f2”,

… , “fk” refer to other entries in SM. The entry f binds the free
identifiers “f1”, “f2”, …, “fk” to the corresponding entries in
SM.

The ent operator defines a generic functional expression
declared in a service model SM. A service model is a collection
of functional entries that form higher-order functional
compositions – responses of the model. If ent declares a
constant function then a model with all such entries is called a
data context. In SML an entry is a higher-order function if it
does at least one of the following:

• takes one or more functional entries as arguments
• returns a functional entry as its result

A service signature in SML is an operation service
referencing an operation of a provider service. It is declared by
a type of provider tp and its operation op, to be evaluated in the
scope of a current context of the service. An association <op,
tp> is called a service signature and is denoted in SML by
sig(op, tp). A return value of operation op executed by a
service provider implementing a type tp is declared as follows:

 func f = ent(“f”, sig(op, tp))
or a multifidelity service entry

 func f = ent(“f”, entFi(sig(op1, tp1, …, sig(opn, tpn))
where the operator entFi declares a multifidelity of entry f.

A service provider may implement multiple service types
used to classify its instances in the network by its multitype. In
that case a service provider multitype, as a list of all
implemented service types tp1, …, tps, can be specified in a
signature as the provider implementation identity. Optionally a
service provider name with additional attributes can be used as
well. Thus, a signature s with a multitype (tp1, tp2, …, tps), an
operation op1 of type tp1, and service name myService takes the
following expanded form:

 sig s = sig(op1, tp1, tp2, …, tps, srvName(“myService”))
Note that a signature s does not refer to an instance of a

service provider directly its multitype determines instances of
service providers at runtime. Multityping is used to manage
and reduce complexity and unpredictability of network
comprised of replaceable remote component services with one
another at runtime, as long as the multitype semantics of the
component service is the same.

The network-centric semantics in SML is based on the
concept of service multitype. If the operation type tp1 is a class
type then the signature works as a service provider constructor
– creates an instance at runtime when the referenced service
provider needs to be executed, otherwise SOS finds in the
network the remote proxy of the service provider declared by
its multitype.

A value y ∊ Y of constant function (variable) x in SML is
declared by a value entry x as follows:

 val x = val(“x”, y)
or a multifidelity value entry

 val x = val(“x”, entFi(val(“x1”, y1), …, val(“xk”, yk))).
A data context dc (of cxt type) as an unordered collection of

val entries is defines as follows:
 cxt dc = context(val(…), …, val(…))

and valuation of the entry x in a data context c as follows:
 Object y = value(dc, “x”)

where “x” is a name of variable x in a data context dc.

– 4 –

A value of an entry x in cxt can be changed to v as follows:
 setValue(dc, “x”, v)
A mogram (of mog type) as an unordered collection mdl

comprising of value entries val and multivariable entries ent is
called a context model and is declared as follows:

 mog mdl = model(val(…), …, ent(…), …)
Note that multivariable entries of models that take functional
entries as arguments create functionals (higher-order
functions).

Evaluation of an entry f in a model mdl is declared as
follows:

 Object y = eval(mdl, “f”)
or

 Object y = eval(mdl, “f”, cin)
where y ∊ Y is an output value and cin is a context used for
substitution of value entries in mdl.

Evaluation of a model mdl for responses defined in the
model is declared as follows:

 cxt cout = eval(mdl)
or

 cxt cout = eval(mdl, cin)
where cout is a data context - the result of evaluation of
response entries for an input data context cin. Model
evaluations are defined by functional compositions of response
entries with no explicit strategy for altering the configuration
dependencies (functional composition) of the model. However,
execution dependencies can be specified for entries that require
other entries to be executed beforehand at runtime.

Responses of a model (names of response entries) can be
part of the model declaration by inlining responses “f1”, “f2”,
… , “fk” as follows:

 response(“f1”, “f2”, …, “fk”)
Alternatively, responses can be updated as required. To
increase responses:

 responseUp(mdl, “f1”, “f2”,…, “fk”)
and to decrease responses:

 responseDown(mdl, “f1”, “f2”,…, “fk”)
When names of entries are absent then responseDown removes
all responses and responseUp makes all output entries as
default responses of the model.

So far, we have defined in SML, elemntary services of ent
and sig types and federated services of model type. The
following statement executes any service sr:

 Object out = exec(sr, arg1,…, argn)
where argi is an SML argument of the Arg type. For example,
signatures, contexts, fidelities, and mograms are common
arguments. The statement executing the operation add of
service type Adder:

exec(sig(“add”, Adder.class), context(val(“x1”, 3.0),
 val(“x2”, 1.0), val(“x3”, 7.0))

returns 11.0 by an instance of a service provider found in the
network that implements the interface Adder. Here, the
signature sig(“add”, Adder.class) binds to an instance of
service provider - remote object - implementing the service
type Adder. If the class AdderImpl implements the interface
Adder then the execution:

exec(sig(“add”, AdderImpl.class), context(val(“x1”, 3.0),
 val(“x2”, 1.0), val(“x3”, 7.0))

creates an instance of the class AdderImpl at runtime and calls
the method add with a given context on the locally created
instance of AdderImpl.

A service task is an elementary request service defined by a
signature with a data context as follows:

 mog y =task(“y”, sig(op, tp), context(…))
where “y” is a name of the task y with a given signature and
data context. When a list of signatures is specified then a task
is called a batch task.

A multifidelity task is declared in SML as follows:
 task(“y”, sigFi(sig(op, tp),…), context(…))

where the operator sigFi declares multifidelity of task y with
the first signature as a default fidelity. A selected fidelity can
be preselected or declared as an argument when executing a
task or set by the fidelity manager of its containing mogram at
runtime.

At its heart, service-orientation is the act of uniform
decomposition into self-contained local and/or remote
subroutine modules interconnected and replaceable at runtime.
In SML interconnections of entries and service tasks (see Fig.
1) are declared by a mogram that binds multifidelity signatures
to remote/local subroutines of service providers at runtime.

An exertion is a procedural/object-composite mogram –
federated request service in SML [7]. A service task is an
elementary service exertion used in compound exertions. A
compound exertion is a set of exertions and/or mograms
grouped together within the scope of SML operators: block or
job. The exertion block is a concatenation of component
mograms along with flow-control exertions such as conditional
(opt, alt) and loop (loop) exertions. A job exertion is a
hierarchically structured exertion (object composite) from
component exertions and/or mograms, optionally with a
provided control strategy. The SML semantics of opt, alt, and
loop is the same as the UML operators used with interaction
frames (combined fragments) in sequence diagrams.

Exertions can be used as values of functional entries in
models and entry models can be used as data contexts in
exertions. That way, either an exertion blended with models, or
a model blended with exertions creates a service aggregation of
models and/or exertions – a service mogram (model and/or
program). The generic ent functional operator, in most obvious
cases, declares a service entry of the corresponding type
according to used arguments for ent. Specialized entry
operators (val, call, lambda, neu, srv, and svr correspond to:
value, call unit, lambda, neuron, service, and service variable)
can be used along with new ent subtypes.

A mogram min to be executed, is said to be exerted, by its
corresponding service federation. Exerting is declared as
follows:

 mog mout = exert(min)
The exerted mout contains the result of evaluation and all

net-centric information regarding its execution. The result
operator returns the output context of the exerted mogram
mogout as follows:

 cxt cout = result(mout)
The value y of variable x in cout is specified by the operator

value as follows:
 Object y = value(cout , “x”)

– 5 –

or executing directly:
 Object y = result(mogout, “x”)
An evaluation result cout of mogram min is a data context

declared as follows:
 cxt cout = eval(min)

Note, that the eval operator returns an output context cout but
the exert operator an executed mogram mout.

A service mogram is a collection of interacting request
services (entries, tasks, models, and exertions) that bind at
runtime to a federation of service providers via mogram
signatures. Multifidelity federations can morph during
execution under control of the mogram morphers and its
fidelity manager with the goal to return the best result in the
evolving net-centric configuration - a morphing system
(mogram) of systems (mogram’s fidelity projections).

IV. AN EXAMPLE OF A MULTIFIDELITY MODEL IN SML
To illustrate SML in action a simple model is declared in

SML with four multifidelity entries (mFi1, mFi2, mFi3 and
mFi4), four metafidelities (sysFi2, sysFi3. sysFi4, sysFi5), four
morphers (morpher1, morpher2, morpher3, morpher4), and
five provider services (signatures in entries remote and in tasks
local) referenced by service signatures used in entries and tasks
of the model mdl.
// four entry multifidelity model with four morphed fidelities (mphFi)
// and corresponding morphers
mog mdl = model(inVal("arg/x1", 90.0), inVal("arg/x2", 10.0),
 ent("mFi1", mphFi(morpher1, add, multiply)),
 ent("mFi2", mphFi(entFi(ent("ph2", morpher2),
 ent("ph4",morpher4)), average, divide, subtract)),
 ent("mFi3", mphFi(average, divide, multiply)),
 ent("mFi4", mogFi(morpher3, t5, t4)), fi2, fi3, fi4, fi5,
 response("mFi1", "mFi2", "mFi3", "mFi4", "arg/x1",
"arg/x2"));

sig add = sig("add", Adder.class,
 result("y1", inPaths("arg/x1", "arg/x2")));
sig subtract = sig("subtract", Subtractor.class,
 result("y2", inPaths("arg/x1", "arg/x2")));
sig average = sig("average", Averager.class,
 result("y3", inPaths("arg/x1", "arg/x2")));
sig multiply = sig("multiply", Multiplier.class,
 result("y4", inPaths("arg/x1", "arg/x2")));
sig divide = sig("divide", Divider.class,
 result("y5", inPaths("arg/x1", "arg/x2")));

mog t4 = task("t4",
 sig("multiply", MultiplierImpl.class,
 result("result/y", inPaths("arg/x1", "arg/x2"))));
mog t5 = task("t5",
 sig("add", AdderImpl.class,
 result("result/y", inPaths("arg/x1", "arg/x2"))));

Morpher morpher1 = (mgr, mFi, value) -> {
 Fidelity<Signature> fi = mFi.getFidelity();
 if (fi.getSelectName().equals("add")) {
 if (((Double) value) <= 200.0) {
 mgr.morph("sysFi2");
 } else {
 mgr.morph("sysFi3");
 }
 } else if (fi.getPath().equals("mFi1") &&
fi.getSelectName().equals("multiply")) {

 mgr.morph("sysFi3");
 }
};
Morpher morpher2 = (mgr, mFi, value) -> {
 Fidelity<Signature> fi = mFi.getFidelity();
 if (fi.getSelectName().equals("divide")) {
 if (((Double) value) <= 9.0) {
 mgr.morph("sysFi4");
 } else {
 mgr.morph("sysFi3");
 }
 }
};
Morpher morpher3 = (mgr, mFi, value) -> {
 Fidelity<Signature> fi = mFi.getFidelity();
 if (fi.getSelectName().equals("t5")) {
 Double val = ((Double) value(context(value), "result/y"));
 if (val <= 200.0) {
 putValue(context(value), "result/y", val + 10.0);
 mgr.reconfigure(fi("mFi4","t4"));
 }
 } else if (fi.getSelectName().equals("t4")) {
 // t4 is a multiply task
 Double val = ((Double) value(context(value), "result/y"));
 putValue(context(value), "result/y", val + 20.0);
 }
};
Morpher morpher4 = (mgr, mFi, value) -> {
 Fidelity<Signature> fi = mFi.getFidelity();
 if (fi.getSelectName().equals("divide")) {
 if (((Double) value) <= 9.0) {
 mgr.morph("sysFi5");
 } else {
 mgr.morph("sysFi3");
 }
 }
};

fi fi2 = fi("sysFi2", mphFi("mFi2", "ph4"), fi("mFi2", "divide"),
 fi("mFi3", "multiply"));
fi fi3 = fi("sysFi3", fi("mFi2", "average"), fi("mFi3", "divide"));
fi fi4 = fi("sysFi4", fi("mFi3", "average"));
fi fi5 = fi("sysFi5", fi("mFi4", "t4"));

Let’s evaluate mdl subsequently with specified
multifidelities and morphers in SORCER with default fidelities
and later with the requested fidelity fi("mFi1", "multiply").
// with default fidelities
cxt out = eval(mdl);
assertTrue(value(out, "mFi1").equals(100.0));
assertTrue(value (out, "mFi2").equals(9.0));
assertTrue(value (out, "mFi3").equals(900.0));
assertTrue(value (out, "mFi4").equals(110.0));

// selecting the fidelity mFi1
out = eval(mdl, fi("mFi1", "multiply"));
assertTrue(value (out, "mFi1").equals(900.0));
assertTrue(value (out, "mFi2").equals(50.0));
assertTrue(value (out, "mFi3").equals(9.0));
assertTrue(value (out, "mFi4").equals(920.0));

The above example can be found in the multiFi branch of
the SORCER project (http://sorcersoft.org/project/site/) in the
module examples at
sml/src/test/main/java/mograms/ModelMultiFidelities.

– 6 –

V. OBJECT-ORIENTED MODEL OF THE SORCER PLATFORM
The relationship of the main SORCER types required to

implement multifidelity services is depicted in the UML class
diagram in Fig. 2. Services of the Request type are instances of
two elementary subtypes: Entry and Task, and the federated
request Mogram type. All frontend entities are instances of the
common Service type with uniform execution of local and
remote services at runtime. Top-level types of the SORCER
system are shown Fig. 2 in order to illustrate the architectural
OO view of key SO concepts (Fi<T>, Request, Mogram,
Signature, and Provider) all of the common Service type.

In general, a mogram is an expression of collaboration of
remote and/or local subroutines. A model is a declarative
representation of interrelated functional entries but an exertion
is an imperative/OO aggregation of component mograms. Both
entries and tasks bind to subroutines via evaluators and service
signatures, correspondingly. Therefore a service mogram is a
compound service request for a federation of provider services
actualized by SOS – a service federation created and managed
by SOS. Signatures by using service multitypes provide for
indirect referencing of local/remote service providers. A
service consumer runs an aggregation of request services that
bind to the hierarchically organized service federation.

We distinguish three main categories of services: operation,
elementary, and federated services. From the SO point of view
creation of user-centric request services is the primary
mogramming objective assuming that service providers
implement multitypes with preferred programming paradigms
and can be incorporated into service federations as subroutines
to be bound to operation services at runtime. Note, that
multifidelities are used in request services only. A mogram is a
frontend service that hierarchically aggregates elementary
requests (entries and tasks) that bind indirectly to executable
subroutines of evaluators and service providers,
correspondingly.

Each service provider implements a multitype of service
types. Each service types may have multiple implementations
(provider services) in the network. We do not know location of
service provider instances in the network; we require only their
service types to be implemented. The question is, how to find a
required implementation in the network. The answer is, by
matching a multitype of the signature to the multitype of any
implementation available in the network. Service providers to
differentiae from each other may implement complementary
service types, for example, tag interfaces associated with
implementation details. Complementary types can be registered
with primary service types, then all to be used in signatures
when looking up a service provider. Multityping of signatures
is the concept of a service classifier of redundant provider
instances in the network or instances with multiple
implementations of the same multitype.

Fidelity is defined usually as “the quality or state given
with strong assurance; accuracy in details”. For a computing
process, accuracy and fidelity have the same meaning and are
used interchangeably. Similarly, “multifidelity” from the
computing perspective refers to a computing environment with
multiple fidelity levels for a given computing process, meaning
there are different implementations of computing process to

choose from. Fidelity and cost (or similarly accuracy and time)
are positively correlated; this represents a fundamental trade in
design. When selecting the fidelity level for collaborating
subroutines in a service federation, it is important to
appropriately balance the fundamental trade between cost and
accuracy.

Multifidelities can be observable and observed. Therefore,
the positive or negative feedback received regarding applied
service fidelities from observable multifidelities can be used to
update fidelities, upstream of already executed services and
downstream for new looked up services. The fidelity manager,
as the observer of morphers, updates fidelities. Morphers
associated with morphed fidelities form emergent properties in
the morphing multifidelity system.

An emergent modeling platform requires the ability to
express a service system with a given fidelity projection as the
instance of the multifidelity metasystem with multiple fidelity
projections. Also, the computing platform requires the ability
to execute and morph the evolving system with updated
projections managed by the metasystem. A multifidelity
metasystem defined in SML enables quick and effective
communication with other team members and allows for
evolving updates such that each new instance of the system is a
new multifidelity projection of the metasystem.

SML defines two types of multifidelities in mograms:
select-fidelities and morph-fidelities. Select-fidelities allow for
system reconfiguration but morph-fidelities allow for self-
morphing the structure of the mogram. A system mogram, that
defines the service federation created and managed by the
SORCER operating system, is an instance of a metasystem –
multifidelity mogram. To reconfigure and morph a mogram its
fidelity manager uses projection functions and morphers. Both
reconfiguration and morphing allow for adaptivity of system

Fig. 2. The core SORCER types in support of SML.

– 7 –

and system-of-systems correspondingly, when updates of
fidelities and metafidelities are under control of the fidelity
manager at runtime. Adaptive federated SO systems with
morph-fidelities are SO emergent systems. This type of
systems exhibits three types of adaptivities called system-of-
system, system, and service agility [9]. Metasystem agility
refers to system reinstantiation, system agility refers to
updating system projections, and service agility refers to
updating fidelities of elementary request services at runtime.

VI. CONCLUSIONS
Markov tried to consolidate all work of others on effective

computability. He has introduced the term of algorithm in his
1954 book Theory of Algorithms [1]. The term was not used
by any mathematician before him and reflects a limiting
definition of what constitutes a computational process: a
mathematical mapping from various initial data to the desired
result. In this paper a generic term, subroutine corresponds to
an algorithm executed by a corresponding evaluator. The
mathematical view of process expression has limited
computing science to the class of processes expressed by
algorithms. From experience in the past decades it becomes
obvious that in computing science the common thread in all
computing disciplines is process expression; that is not limited
to algorithm or actualization of process expression by a single
computer. In this paper, service-orientation is proposed as a
class of distributed emergent processes with multifidelity
federated services.

The “everything is a service” semantics is introduced with
multifidelity federated services – mograms – as SO process
expressions, to be actualized by dynamic federations of service
providers in the network. A multifidelity mogram is considered
as a dynamic representation of a net-centric emergent adaptive
process defined by the end user. In SORCER, a rectified
mogram, embedded into a service provider container, becomes
a service provider – a frontend request becomes a backend
provider.

To express emergent processes consistently and flexibly,
the actualization of SML by the SORCER platform is based on
three pillars of services orientation that incorporate pillars of
functional, structured, and object-orient programming. Request
services are multifidelity services but provider services are
multitype services. By multitypes of signatures used in
mograms a multi-multitype of service federation is determined.
Therefore, multitype of a signature and multi-multitype of
mograms are classifiers of instances of service providers and
service federations in the network, correspondingly.

Emergent systems exhibit three types of adaptivities called
system-of-systems (metasystem), system, and service agilities.
Metasystem agility refers to updating metafidelities (system
reinstantiation), system agility refers to updating fidelities of a
mogram (system projection), and service agility refers to
selecting fidelity of elementary request services [9].

The first rule of service-orientation: do not morph and do
not distribute your system until you have an observable reason
to do so. First develop the system with no fidelities and no

remote services. Later introduce must-have distribution and
multifidelities. Doing so step-by-step you will avoid the
complexity of modeling with multifidelities and distribution all
at the same time.

The SORCER architectural style represents a federated
governance of net-centric and multifidelity service consumers
that federate mograms representing SO applications created by
the end users. It elevates net-centric, dynamic service providers
(applications, tools, and utilities) into first-class elements of the
SO federated process expression. The essence of the approach
is that by making specific SML choices, we can obtain
desirable dynamic properties from the SO frontend system we
create. The SORCER platform has been successfully deployed
and tested for design space exploration, parametric, and
optimization mogramming in multiple projects at the
Multidisciplinary Science and Technology Center
AFRL/WPAFB (e.g. [4]).

ACKNOWLEDGMENT
This work was partially supported by the Air Force

Research Lab, Aerospace Systems Directorate,
Multidisciplinary Science and Technology Center, the contract
number FA8650-16-C-2641, Collaborative Research and
Development for Innovative Aerospace Leadership; and by the
Polish-Japanese Academy of Information Technology.

REFERENCES
[1] Markov, A.A. (1971) Theory of Algorithms, trans. by Schorr-

Kon, J.J., Keter Press
[2] O'Hearn P.W. & Tennent, R.D. (eds), Algol-like Languages

(Progress in Theoretical Computer Science), ISBN-10:
0817638806 Vol. 1, Birkhäuser; 1997

[3] Aziz-Alaoui, M. & Cyrille Bertelle, C. (eds) (2006) Emergent
Properties in Natural and Artificial Dynamical Systems
(Understanding Complex Systems), ISBN-13: 978-3540348221,
Springer

[4] Burton, S.A., Alyanak, E.J., and Kolonay, R.M. (2012) Efficient
Supersonic Air Vehicle Analysis and Optimization
Implementation using SORCER, 12th AIAA Aviation
Technology, Integration, and Operations (ATIO) Conference
and 14th AIAA/ISSM AIAA 2012-5520

[5] Kleppe A. (2009) Software Language Engineering, Pearson
Education, ISBN: 978–0–321– 55345–4

[6] Kolonay, R. M. (2014) A physics-based distributed
collaborative design process for military aerospace vehicle
development and technology assessment, International Journal
on Agile Systems and Management, Vol. 7, Nos. ¾

[7] Sobolewski, M. (2014) Service oriented computing platform: an
architectural case study. In: Ramanathan R, Raja K (eds)
Handbook of research on architectural trends in service-driven
computing, IGI Global, Hershey, pp 220-255

[8] Sobolewski, M. (2015) Technology Foundations. In: J.
Stjepandić et al. (eds.) Concurrent Engineering in the 21st
Century, ISBN 978-3-319-13775-9, Springer International
Publishing Switzerland, pp 67-99

[9] Sobolewski, M. (2017) Amorphous transdisciplinary service
systems. Int. J. Agile Systems and Management, Vol. 10, No. 2,
2017, Int. J. Agile Systems and Management, Vol. 10, No. 2,
2017, pp. 93-114

[10] SORCER Project (open source version). Available at
http://sorcersoft.org/project/site/ (Accessed: August 10, 2018).

– 8 –

