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Abstract—Service-oriented Mogramming Language (SML) is 
designed for service-orientation as UML was considered for 
object-orientation. SML is also an executable language in the 
SORCER platform based on service abstraction (everything is a 
service) and three d of service-orientation: context awareness 
(contexting), multifidelity, and multityping. Context awareness is 
related to parametric polymorphism, multifidelity is a form of ad 
hoc polymorphism, and multityping is a net-centric form of type 
polymorphism. SML allows for defining polymorphic service 
systems that can reconfigure and morph service collaborations at 
runtime to definite an emergent form with distinct constraints 
and heuristics. Here, emergence of service system refers to the 
appearance of higher-level properties and behaviors of 
collaborating service federations that come from the collective 
dynamics of that collaborating networked services and activity of 
service morphers that manage multifidelities at runtime. In this 
paper the basic concepts of SML with the three design patterns 
of service collaborations are presented. Its runtime environment 
is introduced with the focus on the three pillars of service-
orientation. 

Keywords—true service orientation, consumer services, 
provider services, service mogramming language (SML), 
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I. INTRODUCTION  
Service-oriented architecture (SOA) emerged as an 

approach to combat complexity and challenges of large 
monolithic applications by offering collaborations of 
replaceable functionalities by remote/local component services 
with one another at runtime, as long as the semantics of the 
component service is the same. However, despite many efforts, 
there is a lack of good consensus on semantics of a service and 
how to do true SOA well. The true SOA architecture should 
provide the clear answer to the question: How a service 
consumer can consume or compose some functionality from 
provider services, while it doesn’t know where service 
providers, implementing that functionality, are or even how to 
communicate with them?  

Many people think they are doing or talking about SOA, 
but most of the time they’re really doing point-to-point 
integration projects with APIs, web services, or even just point-
to-point XML (REST). The reason why this approach is 
deficient is because service consumers should never 
communicate directly to service providers. Why? First, the 
main concept of SOA is that we want to deal with frequent and 

unpredictable change by constructing an architecture that 
loosely-couples the providers of capability from the consumers 
of capability. It is not possible to have direct reliable 
communication if variability exists in the network and 
provided service capabilities evolve over time. Second, if we 
are relying on a black-box middleware and often-proprietary 
technology to manage service communication differences we 
will simply shift all the complexity to end-points of services 
and increasingly more complex, expensive, and brittle middle 
point. Reworked middleware, what often is done and named as 
SOA, isn’t the solution for a dynamic net-centric 
communication and architecture.  

Computer-aided engineering is the broad usage of 
heterogeneous computer software for both standalone and 
distributed systems to aid in engineering complex analyses and 
optimization tasks. Multidisciplinary Analysis and Design 
Optimization (MADO) is a domain of research that studies the 
application of numerical analysis and optimization techniques 
for the design of dynamic systems of systems involving 
multiple coupled disciplines. The formulation of MADO 
problems has become increasingly complex as the number of 
disciplines and design variables included in typical studies has 
grown from a few dozen to thousands when applying high-
fidelity physics-based modeling early in the design process [6]. 
Therefore, MADO is an appropriate domain for studying SOA 
[4, 6, 7].  

There are several trends that are forcing system 
architectures to evolve due to complexity of problems being 
solved presently [8]. Users expect a rich, interactive and 
dynamic experience on a wide variety of friendly user agents 
and highly modular and dynamic backend systems. Systems 
must be highly scalable, highly available and run locally or 
remotely, or both. Organizations often want to frequently roll 
out updates, even multiple times a day. Consequently, it’s no 
longer adequate to develop simple, monolithic applications. In 
a dynamic system when its backend is morphing constantly to 
emergent solution [3], the user agent has to support emergent 
nature of its backend. Emergent system means net-centric to 
refer to participating in distributed problem solving as a part of 
a continuously evolving complex community of people, 
devices, information and services interconnected by a 
communication network to achieve optimal benefit of 
resources and better synchronization of flowback events and 
their consequences to the users. Emergent system means also 
service-oriented (SO) and scalable with multiple 
computational fidelities of services so your communication 
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network can be scaled up and down dynamically, from a single 
computer to a large number of computers by adjusting fidelities 
of service providers [9]. 

In declarative programming a process is expressed by the 
logic of computation without describing its control flow. In 
particular, the logic of computation in functional programming 
is defined by a functional composition. A functional program is 
stateless but imperative programs usually take advantages of a 
shared state in an executing subroutine - a set of instructions 
that implement a subprocess within a program. Object-oriented 
(OO) programming is a convenience and ability to reason 
about operations implemented by methods (subroutines) with a 
common shared state represented by encapsulated variables. 
Being able to hide details of algorithms and their data 
structures can help reason about the logic of object 
collaboration such that each object manages its own state by 
own implementation of methods. 

Service semantics can be either declarative, imperative, or 
OO. A blend of all programming paradigms should be 
supported by SO languages intended for solving complex 
problems and building heterogeneous SO systems. Therefore, 
component services should be expressed using effective 
programming styles. Each programming paradigm introduces 
distinguishing principles of its programming model but also 
depends on its lower level paradigm. Therefore, the pillars of 
SO programming introduced in this paper are layered on pillars 
of OO, structured, and functional programming. The pillars of 
SO programming are focused on context awareness, 
multifidelity, and multityping for both service providers and 
service federations. 

The Service-ORiented Computing EnviRonment 
(SORCER [7]) adheres to the true SO architecture based on 
well-defined service abstractions and three pillars of SO 
programming. Its unique SO approach distinguishes frontend 
(process expression) services from backend (process 
actualization) provider services (interface types), service 
providers, and federations.  

A service consumer is a composition of frontend request 
services and a service provider is a composition of provider 
services as shown in Fig. 1. A consumer is expressed in a SO 
language but a provider is actualized as the OO remote/local 
counterpart implementing multiple provider services. Frontend 
services are references to backend services. Provider services 
are service specifications–contracts but service providers are 
implementations of contracts. A federated request service, 
called a service mogram, corresponds to a union of service 
collaborations, each represented by a component mogram. The 
union under governance of the federated mogram represents an 
actualized federation of service providers. 

SO federalism is a compound model of governance with a 
central (containing) mogram, component mograms, and a 
network of service providers (citizens). The rules of federated 
mogram governance are realized by a SO operating system 
(federal government). The main purpose of the SO operating 
system is to satisfy interests of service consumers and to fulfill 
their needs using capabilities of federated service providers. 

Mograms are structured from elementary request services 
(entries and tasks) and other mograms. Entries and tasks 
depend on operation services called signatures. Entries can 
also use various types of evaluators to invoke local 
subroutines. A signature is a reference to a remote/local 
operation of service provider. The unique signature-based 
architecture is about both service configuration complexity and 
execution complexity that allows treating local and remote 
service providers implementing subroutines uniformly at 
various levels of granularity and fidelity. When dealing with 
both complexities, you have a case to distribute services, 
otherwise create a modular monolith with locally executable 
modules as local services. Later, when complexity of the 
system becomes unmanageable you can deploy almost 
instantly the existing local service providers as network 
services on as-needed basis, and then run changed services of 
the original monolith in the network. In SORCER that is done 
by changing the service type of signatures or just selecting the 
service fidelity from local to network when requesting a 
service provider. Service providers never communicate directly 
with each other in SORCER. For executing mograms its 
operating system creates communication networks of service 
federations at runtime, as the operating system’s dynamic 
processor. 

Fig. 1. The semantics of services in SML. 
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The remainder of this paper is organized as follows: 
Section 2 relates a SO computing platform to mogramming; 
Section 3 describes the basic syntax and semantics of SML 
with a mogramming example in Seciton 4; Section 5 relates 
SML to the OO implementation in SORCER; then we 
conclude with final remarks and comments. 

II. PLATFORMS, OPERATING SYSTEMS, AND MOGRAMS  
A computing platform is an expression of a runtime process 

defined by programming language, operating system, and 
processor.  An operating system (OS) is system software that 
manages a processor for the platform, executable codes of 
applications, and provides common services including a shell 
for executing and monitoring user applications. All user 
applications require a kind of operating system to run. With 
respect to various abstractions and granularity of user 
applications, various platforms have been developed over time. 
Granularity of computational units (instructions, commands, 
callable units, objects, services) and various forms of program 
compositions may differ but from the mathematical point of 
view we can consider them conceptually as generic functions - 
transformations or processes that map input data to output data. 
Using the abstraction of generic function as a subroutine, SO 
programming semantics can be generalized and differentiated 
from functional, structured, and OO programing as illustrated 
in Fig. 1. Hence, SO programming requires a corresponding 
operating system and programming environment 
(OS/language) as other programming paradigms. For example 
UNIX/C for structured programming and JVM/Java for OO 
programming.  

A granularity of programs increases from a list of 
instructions, via collaboration of objects to a network-centric 
federation of service providers. A network-centric federation of 
remote/local services is the actualization of federated a request 
service (of Request type) that bind operation services (of 
Signature type) to remote service providers (of Provider type) 
and local objects created at runtime. Writing code as a list of 
low-level machine instructions is a terrible way for humans to 
reason and instruct computers. Objects have more humane 
semantics but still low granularity for dynamic network-centric 
service federations. Service providers are more like tools, and 
utilities that can be aggregated into service collaborations and 
expressed by the end users as higher-level instruction in service 
federations.  

Two types of frontend services are distinguished: operation 
and request services. Operation services of Signature or 
Evaluator types refer to remote/local or local subroutines, 
correspondingly. Evaluators invoking subroutines are called 
subroutine services. A request service is either elementary or 
federated. Elementary ones use operation services but 
federated ones specify how provider and subroutine services 
are federated to collaborate. Note that an instruction in 
structured programming or a method in OO programming is an 
intrinsic component of programs. In SO programming a 
request service is a program but an operation service is a 
service handle that binds to a subroutine at runtime - no static 
dependencies to remote subroutines. Request services can be 
created with multifidelity signatures and entries to allow for 
selecting preferred subroutine fidelities at runtime. That type of 

service-orientation requires a relevant service modeling and/or 
programming (mogramming [5]) language and a corresponding 
operating system. 

SORCER is a SO computing platform (implemented with 
objects – see the UML relationships in Fig. 1 and in Fig. 2), 
which provides SO mogramming with its service operating 
system (SOS) that interprets and runs frontend request services 
and dynamically manages corresponding backend federations 
of remote/local service providers as its SO processor. In 
SORCER, request services bind at runtime to created local 
objects or to proxy objects that are created, registered, and 
owned by service providers. SOS can provision missing service 
providers at runtime if specified so by mogram signatures [8]. 

In summary, a request service is either elementary or 
federated. An elementary service invokes a requested 
subroutine but federated one invokes the federation of 
providers and/or subroutines managed by SOS. A federated 
request service – mogram – is an expression of a service 
federation by one of the three federated design patterns: 

1. entry model – is a declarative expression of interrelated 
multiple service entries (responses) composed functionally 
of dependent service entries in the model. 

2. exertion – is an expression of hierarchically organized 
exertions and mograms. An elementary exertion (Task) 
executes a remote/local subroutine of a service provider. 
An exertion block is a service procedure and exertion job 
is an exertion composite. transmodel (madomodel) – is a 
model that hierarchically aggregates subordinate models 
as dependent disciplines. 

3. transmodel (madomodel) – is a model that hierarchically 
aggregates subordinate models and exertions as potentially 
coupled disciplines. 

Since either, a model or an exertion may comprise of 
component mograms, therefore, a mogram is a service 
expression of a multifidelity system of systems (mogram of 
mograms) that federates various dependent subsystems 
(exertions, models, and transmodels) into multiple fidelity 
projections of hierarchically nested service federations created 
and managed by SOS at runtime. Thus, each fidelity projection 
is an instance of the system of systems. 

The primary challenge of the SO architecture is to allow the 
end user to use existing subroutines and service providers 
exposing service types in the network. The secondary one to 
create executable declarative and/or imperative federated 
request services. In other words, instead of invoking statically 
standalone service providers and subroutines or integrating 
them with APIs, the computing environment should allow the 
end users to create and execute directly in SML net-centric 
service federations. Therefore, SO operating system is required 
for mograms to manage and execute dynamic service 
federations - its SO federated processor. 

III. BASICS OF SERVICE MOGRAMMING LANGUAGE (SML)  
The presented approach to service-orientation is based on 

two abstract service categories (see Fig. 1): frontend services 
(operation services and request services) and backend services 
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(provider, and federation services) with three pillars of service-
orientation: contexting, multifidelity, and multityping.  

Contexting is a property of request services to aggregate 
and exchange uniformly the state of collaborating services with 
a generic data structure, called a data context. It is a form of 
parametric polymorphism for services – the Context type as the 
generic collection type of argument and return values for all 
provider services. 

Multifidelity is the morphing activity making decisions 
about choices of service fidelities to be used by services at 
runtime. It is a form of ad hoc polymorphism that defines 
hierarchical control flow of executing services in mograms.  

A multitype of a signature is a classifier of service 
providers in the network, but a multi-multitype of mogram is a 
classifier of service federations in the network. A set-theoretic 
subtyping of multitypes defines an inheritance hierarchy of 
service providers. Multityping is a net-centric form of type 
polymorphism with set-theoretic subtyping of multitypes. It 
defines the inheritance hierarchy of service providers and 
federations in the network. A multitype N is assignable from a 
multitype M, if N and M are the same, or each service type of N 
is the member of multitype M. If N is assignable from M then 
N is said to be a supermultitype of M. If M is a submultitype of 
N, the multityping relation is defined, as N is a subset of M, to 
mean that any signature of type M can be safely used in a 
context where a signature of type N is expected. The same 
applies to multi-multitypes that define the inheritance of 
service federations.  

Conceptually, if a service mapping f produces an output y, 
when given an input x and there exist multiple implementations 
fi1, fi2,… , fin of f called fidelities to produce y = f(x, fij, mFif),  j 
= 1, 2, …, n  such that y = fij(x), for a multifidelity mFif = <fi1, 
fi2,… , fin>, then f is called a multifidelity function with 
selectable fidelities in mFif.  In SML, a multifidelity service is 
defined with domain specific multifidelities, potentially with 
morphers and a fidelity manager that use provided strategies 
(heuristics) to select the adequate fidelities implied by the 
current results and service data context.  

A signature binds dynamically by multiple service types 
(multitype) to a service provider but a federated service binds 
(by multiple multitypes of signatures (multi-multitype) to a 
federation of service providers that can be also provisioned by 
a multi-multitype. Service providers can be considered as 
remote or local objects exposing implemented service types 
that are used by signatures as a multitype used for binding to a 
service provider in the network. In SML details of the input x 
are hidden by embedding all formal parameters into a single 
argument called data context used by all frontend services.  

A service model SM in SML conceptually corresponds to a 
multifidelity functional system. A multifidelity function  

 f = (X, Y, fi(f), mFif)  
is declared in SM as follows: 

 func f  = ent(“f”, mFif, args(“f1”, “f2”, …, “fk”)) 
where “f” is a name of the function f declared by the operator 
ent, “f1”, “f2”, …, “fk” are argument identifiers of f , and mFif 
is the multifidelity of f. By default a fidelity of f, fi(f), is the first 
realization in the ordered set mFif . The identifiers “f1”, “f2”, 

… , “fk” refer to other entries in SM. The entry f binds the free 
identifiers “f1”, “f2”, …, “fk”  to the corresponding entries in 
SM. 

The ent operator defines a generic functional expression 
declared in a service model SM. A service model is a collection 
of functional entries that form higher-order functional 
compositions – responses of the model. If ent declares a 
constant function then a model with all such entries is called a 
data context. In SML an entry is a higher-order function if it 
does at least one of the following: 

• takes one or more functional entries as arguments  
• returns a functional entry as its result 

A service signature in SML is an operation service 
referencing an operation of a provider service. It is declared by 
a type of provider tp and its operation op, to be evaluated in the 
scope of a current context of the service. An association <op, 
tp> is called a service signature and is denoted in SML by 
sig(op, tp). A return value of operation op executed by a 
service provider implementing a type tp is declared as follows:  

 func f = ent(“f”, sig(op, tp))  
or a multifidelity service entry  

 func f = ent(“f”, entFi(sig(op1, tp1, …, sig(opn, tpn)) 
where the operator entFi  declares a multifidelity of entry f.  

A service provider may implement multiple service types 
used to classify its instances in the network by its multitype. In 
that case a service provider multitype, as a list of all 
implemented service types tp1, …, tps, can be specified in a 
signature as the provider implementation identity. Optionally a 
service provider name with additional attributes can be used as 
well. Thus, a signature s with a multitype (tp1, tp2, …, tps), an 
operation op1 of type tp1, and service name myService takes the 
following expanded form: 

 sig s = sig(op1, tp1, tp2, …, tps, srvName(“myService”)) 
Note that a signature s does not refer to an instance of a 

service provider directly its multitype determines instances of 
service providers at runtime. Multityping is used to manage 
and reduce complexity and unpredictability of network 
comprised of replaceable remote component services with one 
another at runtime, as long as the multitype semantics of the 
component service is the same.  

The network-centric semantics in SML is based on the 
concept of service multitype. If the operation type tp1 is a class 
type then the signature works as a service provider constructor 
– creates an instance at runtime when the referenced service 
provider needs to be executed, otherwise SOS finds in the 
network the remote proxy of the service provider declared by 
its multitype.  

A value y ∊ Y of constant function (variable) x in SML is 
declared by a value entry x as follows: 

 val x = val(“x”, y)  
or a multifidelity value entry 

 val x = val(“x”, entFi(val(“x1”, y1), …, val(“xk”, yk))). 
A data context dc (of cxt type) as an unordered collection of 

val entries is defines as follows: 
 cxt dc = context(val(…), …, val(…)) 

and valuation of the entry x in a data context c as follows: 
 Object y = value(dc, “x”)  

where “x” is a name of variable x in a data context dc. 
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A value of an entry x in cxt can be changed to v as follows: 
 setValue(dc, “x”, v) 
A mogram (of mog type) as an unordered collection mdl 

comprising of value entries val and multivariable entries ent is 
called a context model and is declared as follows: 

 mog mdl = model(val(…), …, ent(…), …) 
Note that multivariable entries of models that take functional 
entries as arguments create functionals (higher-order 
functions). 

Evaluation of an entry f in a model mdl is declared as 
follows: 

 Object y = eval(mdl, “f”)  
or 

 Object y = eval(mdl, “f”, cin) 
where y ∊ Y is an output value and cin is a context used for 
substitution of value entries in mdl.  

Evaluation of a model mdl for responses defined in the 
model is declared as follows: 

 cxt cout = eval(mdl)  
or  

 cxt cout = eval(mdl, cin) 
where cout is a data context - the result of evaluation of 
response entries for an input data context cin. Model 
evaluations are defined by functional compositions of response 
entries with no explicit strategy for altering the configuration 
dependencies (functional composition) of the model. However, 
execution dependencies can be specified for entries that require 
other entries to be executed beforehand at runtime. 

Responses of a model (names of response entries) can be 
part of the model declaration by inlining responses “f1”, “f2”, 
… , “fk” as follows: 

 response(“f1”, “f2”, …, “fk”) 
Alternatively, responses can be updated as required. To 
increase responses: 

 responseUp(mdl, “f1”, “f2”,…, “fk”) 
and to decrease responses: 

 responseDown(mdl, “f1”, “f2”,…, “fk”) 
When names of entries are absent then responseDown removes 
all responses and responseUp makes all output entries as 
default responses of the model. 

So far, we have defined in SML, elemntary services of ent 
and sig types and federated services of model type. The 
following statement executes any service sr: 

 Object out = exec(sr, arg1,…, argn) 
where argi is an SML argument of the Arg type. For example, 
signatures, contexts, fidelities, and mograms are common 
arguments. The statement executing the operation add of 
service type Adder: 

exec(sig(“add”, Adder.class), context(val(“x1”, 3.0), 
  val(“x2”, 1.0), val(“x3”, 7.0)) 

returns 11.0 by an instance of a service provider found in the 
network that implements the interface Adder. Here, the 
signature sig(“add”, Adder.class) binds to an instance of 
service provider  - remote object - implementing the service 
type Adder. If the class AdderImpl implements the interface 
Adder then the execution: 

exec(sig(“add”, AdderImpl.class), context(val(“x1”, 3.0),  
  val(“x2”, 1.0), val(“x3”, 7.0)) 

creates an instance of the class AdderImpl at runtime and calls 
the method add with a given context on the locally created 
instance of AdderImpl. 

A service task is an elementary request service defined by a 
signature with a data context as follows: 

 mog y =task(“y”,  sig(op, tp), context(…)) 
where “y” is a name of the task y with a given signature and 
data context. When a list of signatures is specified then a task 
is called a batch task.  

A multifidelity task is declared in SML as follows: 
 task(“y”, sigFi(sig(op, tp),…), context(…)) 

where the operator sigFi declares multifidelity of task y with 
the first signature as a default fidelity. A selected fidelity can 
be preselected or declared as an argument when executing a 
task or set by the fidelity manager of its containing mogram at 
runtime.  

At its heart, service-orientation is the act of uniform 
decomposition into self-contained local and/or remote 
subroutine modules interconnected and replaceable at runtime. 
In SML interconnections of entries and service tasks (see Fig. 
1) are declared by a mogram that binds multifidelity signatures 
to remote/local subroutines of service providers at runtime.  

An exertion is a procedural/object-composite mogram – 
federated request service in SML [7]. A service task is an 
elementary service exertion used in compound exertions. A 
compound exertion is a set of exertions and/or mograms 
grouped together within the scope of SML operators: block or 
job. The exertion block is a concatenation of component 
mograms along with flow-control exertions such as conditional 
(opt, alt) and loop (loop) exertions. A job exertion is a 
hierarchically structured exertion (object composite) from 
component exertions and/or mograms, optionally with a 
provided control strategy. The SML semantics of opt, alt, and 
loop is the same as the UML operators used with interaction 
frames (combined fragments) in sequence diagrams.  

Exertions can be used as values of functional entries in 
models and entry models can be used as data contexts in 
exertions. That way, either an exertion blended with models, or 
a model blended with exertions creates a service aggregation of 
models and/or exertions – a service mogram (model and/or 
program). The generic ent functional operator, in most obvious 
cases, declares a service entry of the corresponding type 
according to used arguments for ent. Specialized entry 
operators (val, call, lambda, neu, srv, and svr correspond to: 
value, call unit, lambda, neuron, service, and service variable) 
can be used along with new ent subtypes. 

A mogram min to be executed, is said to be exerted, by its 
corresponding service federation. Exerting is declared as 
follows: 

 mog mout = exert(min) 
The exerted mout contains the result of evaluation and all 

net-centric information regarding its execution. The result 
operator returns the output context of the exerted mogram 
mogout as follows: 

 cxt cout = result(mout) 
The value y of variable x in cout is specified by the operator 

value as follows: 
 Object y = value(cout , “x”) 
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or executing directly: 
 Object y = result(mogout, “x”) 
An evaluation result cout of mogram min is a data context 

declared as follows: 
 cxt cout = eval(min)   

Note, that the eval operator returns an output context cout  but 
the exert operator an executed mogram mout.  

A service mogram is a collection of interacting request 
services (entries, tasks, models, and exertions) that bind at 
runtime to a federation of service providers via mogram 
signatures. Multifidelity federations can morph during 
execution under control of the mogram morphers and its 
fidelity manager with the goal to return the best result in the 
evolving net-centric configuration - a morphing system 
(mogram) of systems (mogram’s fidelity projections).  

IV. AN EXAMPLE OF A MULTIFIDELITY MODEL IN SML  
To illustrate SML in action a simple model is declared in 

SML with four multifidelity entries (mFi1, mFi2, mFi3 and 
mFi4), four metafidelities (sysFi2, sysFi3. sysFi4, sysFi5), four 
morphers (morpher1, morpher2, morpher3, morpher4), and 
five provider services (signatures in entries remote and in tasks 
local) referenced by service signatures used in entries and tasks 
of the model mdl.  
// four entry multifidelity model with four morphed fidelities (mphFi)  
// and corresponding morphers 
mog mdl = model(inVal("arg/x1", 90.0), inVal("arg/x2", 10.0), 
        ent("mFi1", mphFi(morpher1, add, multiply)), 
        ent("mFi2", mphFi(entFi(ent("ph2", morpher2),  
              ent("ph4",morpher4)), average, divide, subtract)), 
        ent("mFi3", mphFi(average, divide, multiply)), 
        ent("mFi4", mogFi(morpher3, t5, t4)), fi2, fi3, fi4, fi5, 
        response("mFi1", "mFi2", "mFi3", "mFi4", "arg/x1", 
"arg/x2")); 

sig add = sig("add", Adder.class, 
        result("y1", inPaths("arg/x1", "arg/x2"))); 
sig subtract = sig("subtract", Subtractor.class, 
        result("y2", inPaths("arg/x1", "arg/x2"))); 
sig average = sig("average", Averager.class, 
        result("y3", inPaths("arg/x1", "arg/x2"))); 
sig multiply = sig("multiply", Multiplier.class, 
        result("y4", inPaths("arg/x1", "arg/x2"))); 
sig divide = sig("divide", Divider.class, 
        result("y5", inPaths("arg/x1", "arg/x2"))); 
 
mog t4 = task("t4", 
        sig("multiply", MultiplierImpl.class, 
                result("result/y", inPaths("arg/x1", "arg/x2")))); 
mog t5 = task("t5", 
        sig("add", AdderImpl.class, 
                result("result/y", inPaths("arg/x1", "arg/x2")))); 
 
Morpher morpher1 = (mgr, mFi, value) -> { 
    Fidelity<Signature> fi = mFi.getFidelity(); 
    if (fi.getSelectName().equals("add")) { 
        if (((Double) value) <= 200.0) { 
            mgr.morph("sysFi2"); 
        } else { 
            mgr.morph("sysFi3"); 
        } 
    } else if (fi.getPath().equals("mFi1") && 
fi.getSelectName().equals("multiply")) { 

        mgr.morph("sysFi3"); 
    } 
}; 
Morpher morpher2 = (mgr, mFi, value) -> { 
    Fidelity<Signature> fi = mFi.getFidelity(); 
    if (fi.getSelectName().equals("divide")) { 
        if (((Double) value) <= 9.0) { 
            mgr.morph("sysFi4"); 
        } else { 
            mgr.morph("sysFi3"); 
        } 
    } 
}; 
Morpher morpher3 = (mgr, mFi, value) -> { 
    Fidelity<Signature> fi = mFi.getFidelity(); 
    if (fi.getSelectName().equals("t5")) { 
        Double val = ((Double) value(context(value), "result/y")); 
        if (val <= 200.0) { 
            putValue(context(value), "result/y", val + 10.0); 
            mgr.reconfigure(fi("mFi4","t4")); 
        } 
    } else if (fi.getSelectName().equals("t4")) { 
        // t4 is a multiply task 
        Double val = ((Double) value(context(value), "result/y")); 
        putValue(context(value), "result/y", val + 20.0); 
    } 
}; 
Morpher morpher4 = (mgr, mFi, value) -> { 
    Fidelity<Signature> fi = mFi.getFidelity(); 
    if (fi.getSelectName().equals("divide")) { 
        if (((Double) value) <= 9.0) { 
            mgr.morph("sysFi5"); 
        } else { 
            mgr.morph("sysFi3"); 
        } 
    } 
}; 

fi fi2 = fi("sysFi2", mphFi("mFi2", "ph4"), fi("mFi2", "divide"), 
    fi("mFi3", "multiply")); 
fi fi3 = fi("sysFi3", fi("mFi2", "average"), fi("mFi3", "divide")); 
fi fi4 = fi("sysFi4", fi("mFi3", "average")); 
fi fi5 = fi("sysFi5", fi("mFi4", "t4")); 

Let’s evaluate mdl subsequently with specified 
multifidelities and morphers in SORCER with default fidelities 
and later with the requested fidelity fi("mFi1", "multiply"). 
// with default fidelities 
cxt out = eval(mdl); 
assertTrue(value(out, "mFi1").equals(100.0)); 
assertTrue(value (out, "mFi2").equals(9.0)); 
assertTrue(value (out, "mFi3").equals(900.0)); 
assertTrue(value (out, "mFi4").equals(110.0)); 
 
// selecting the fidelity mFi1 
out = eval(mdl, fi("mFi1", "multiply")); 
assertTrue(value (out, "mFi1").equals(900.0)); 
assertTrue(value (out, "mFi2").equals(50.0)); 
assertTrue(value (out, "mFi3").equals(9.0)); 
assertTrue(value (out, "mFi4").equals(920.0)); 

The above example can be found in the multiFi branch of 
the SORCER project (http://sorcersoft.org/project/site/) in the 
module examples at 
sml/src/test/main/java/mograms/ModelMultiFidelities.  
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V. OBJECT-ORIENTED MODEL OF THE SORCER PLATFORM  
The relationship of the main SORCER types required to 

implement multifidelity services is depicted in the UML class 
diagram in Fig. 2. Services of the Request type are instances of 
two elementary subtypes: Entry and Task, and the federated 
request Mogram type. All frontend entities are instances of the 
common Service type with uniform execution of local and 
remote services at runtime. Top-level types of the SORCER 
system are shown Fig. 2 in order to illustrate the architectural 
OO view of key SO concepts (Fi<T>, Request, Mogram, 
Signature, and Provider) all of the common Service type.  

In general, a mogram is an expression of collaboration of 
remote and/or local subroutines. A model is a declarative 
representation of interrelated functional entries but an exertion 
is an imperative/OO aggregation of component mograms. Both 
entries and tasks bind to subroutines via evaluators and service 
signatures, correspondingly. Therefore a service mogram is a 
compound service request for a federation of provider services 
actualized by SOS – a service federation created and managed 
by SOS. Signatures by using service multitypes provide for 
indirect referencing of local/remote service providers. A 
service consumer runs an aggregation of request services that 
bind to the hierarchically organized service federation. 

We distinguish three main categories of services: operation, 
elementary, and federated services. From the SO point of view 
creation of user-centric request services is the primary 
mogramming objective assuming that service providers 
implement multitypes with preferred programming paradigms 
and can be incorporated into service federations as subroutines 
to be bound to operation services at runtime. Note, that 
multifidelities are used in request services only. A mogram is a 
frontend service that hierarchically aggregates elementary 
requests (entries and tasks) that bind indirectly to executable 
subroutines of evaluators and service providers, 
correspondingly. 

Each service provider implements a multitype of service 
types. Each service types may have multiple implementations 
(provider services) in the network. We do not know location of 
service provider instances in the network; we require only their 
service types to be implemented. The question is, how to find a 
required implementation in the network. The answer is, by 
matching a multitype of the signature to the multitype of any 
implementation available in the network. Service providers to 
differentiae from each other may implement complementary 
service types, for example, tag interfaces associated with 
implementation details. Complementary types can be registered 
with primary service types, then all to be used in signatures 
when looking up a service provider. Multityping of signatures 
is the concept of a service classifier of redundant provider 
instances in the network or instances with multiple 
implementations of the same multitype.  

Fidelity is defined usually as “the quality or state given 
with strong assurance; accuracy in details”. For a computing 
process, accuracy and fidelity have the same meaning and are 
used interchangeably. Similarly, “multifidelity” from the 
computing perspective refers to a computing environment with 
multiple fidelity levels for a given computing process, meaning 
there are different implementations of computing process to 

choose from. Fidelity and cost (or similarly accuracy and time) 
are positively correlated; this represents a fundamental trade in 
design. When selecting the fidelity level for collaborating 
subroutines in a service federation, it is important to 
appropriately balance the fundamental trade between cost and 
accuracy. 

Multifidelities can be observable and observed. Therefore, 
the positive or negative feedback received regarding applied 
service fidelities from observable multifidelities can be used to 
update fidelities, upstream of already executed services and 
downstream for new looked up services. The fidelity manager, 
as the observer of morphers, updates fidelities. Morphers 
associated with morphed fidelities form emergent properties in 
the morphing multifidelity system.  

An emergent modeling platform requires the ability to 
express a service system with a given fidelity projection as the 
instance of the multifidelity metasystem with multiple fidelity 
projections. Also, the computing platform requires the ability 
to execute and morph the evolving system with updated 
projections managed by the metasystem. A multifidelity 
metasystem defined in SML enables quick and effective 
communication with other team members and allows for 
evolving updates such that each new instance of the system is a 
new multifidelity projection of the metasystem.  

SML defines two types of multifidelities in mograms: 
select-fidelities and morph-fidelities. Select-fidelities allow for 
system reconfiguration but morph-fidelities allow for self-
morphing the structure of the mogram. A system mogram, that 
defines the service federation created and managed by the 
SORCER operating system, is an instance of a metasystem – 
multifidelity mogram. To reconfigure and morph a mogram its 
fidelity manager uses projection functions and morphers. Both 
reconfiguration and morphing allow for adaptivity of system 

Fig. 2. The core SORCER types in support of SML. 
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and system-of-systems correspondingly, when updates of 
fidelities and metafidelities are under control of the fidelity 
manager at runtime. Adaptive federated SO systems with 
morph-fidelities are SO emergent systems. This type of 
systems exhibits three types of adaptivities called system-of-
system, system, and service agility [9]. Metasystem agility 
refers to system reinstantiation, system agility refers to 
updating system projections, and service agility refers to 
updating fidelities of elementary request services at runtime. 

VI. CONCLUSIONS  
Markov tried to consolidate all work of others on effective 

computability. He has introduced the term of algorithm in his 
1954 book Theory of Algorithms [1]. The term was not used 
by any mathematician before him and reflects a limiting 
definition of what constitutes a computational process: a 
mathematical mapping from various initial data to the desired 
result. In this paper a generic term, subroutine corresponds to 
an algorithm executed by a corresponding evaluator. The 
mathematical view of process expression has limited 
computing science to the class of processes expressed by 
algorithms. From experience in the past decades it becomes 
obvious that in computing science the common thread in all 
computing disciplines is process expression; that is not limited 
to algorithm or actualization of process expression by a single 
computer. In this paper, service-orientation is proposed as a 
class of distributed emergent processes with multifidelity 
federated services.  

The “everything is a service” semantics is introduced with 
multifidelity federated services – mograms – as SO process 
expressions, to be actualized by dynamic federations of service 
providers in the network. A multifidelity mogram is considered 
as a dynamic representation of a net-centric emergent adaptive 
process defined by the end user. In SORCER, a rectified 
mogram, embedded into a service provider container, becomes 
a service provider – a frontend request becomes a backend 
provider. 

To express emergent processes consistently and flexibly, 
the actualization of SML by the SORCER platform is based on 
three pillars of services orientation that incorporate pillars of 
functional, structured, and object-orient programming. Request 
services are multifidelity services but provider services are 
multitype services. By multitypes of signatures used in 
mograms a multi-multitype of service federation is determined. 
Therefore, multitype of a signature and multi-multitype of 
mograms are classifiers of instances of service providers and 
service federations in the network, correspondingly. 

Emergent systems exhibit three types of adaptivities called 
system-of-systems (metasystem), system, and service agilities. 
Metasystem agility refers to updating metafidelities (system 
reinstantiation), system agility refers to updating fidelities of a 
mogram (system projection), and service agility refers to 
selecting fidelity of elementary request services [9].  

The first rule of service-orientation: do not morph and do 
not distribute your system until you have an observable reason 
to do so. First develop the system with no fidelities and no 

remote services. Later introduce must-have distribution and 
multifidelities. Doing so step-by-step you will avoid the 
complexity of modeling with multifidelities and distribution all 
at the same time.  

The SORCER architectural style represents a federated 
governance of net-centric and multifidelity service consumers 
that federate mograms representing SO applications created by 
the end users. It elevates net-centric, dynamic service providers 
(applications, tools, and utilities) into first-class elements of the 
SO federated process expression. The essence of the approach 
is that by making specific SML choices, we can obtain 
desirable dynamic properties from the SO frontend system we 
create. The SORCER platform has been successfully deployed 
and tested for design space exploration, parametric, and 
optimization mogramming in multiple projects at the 
Multidisciplinary Science and Technology Center 
AFRL/WPAFB (e.g. [4]). 
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